Toxicity and bioaccumulation of the insecticide "Raid" was determined to assess total animal dietary exposures in a nonoccupational environment. The study focused primarily on dietary exposure concentrations (25-960 microg/g) of the ingredients of Raid administered to rats for 10 days. Tissue concentrations of the insecticide were determined by a high-pressure liquid chromatography method, whereas established methods were used to assess the tissue levels of glucose-6-phosphate and lactic acid dehydrogenase. Results show that animal mortality progressively increased with increasing concentrations while growth (in weight) decreased. Bioaccumulation of the insecticide in the tissues was in the order of lipid > muscle > liver > brain. The indices of toxicity showed no significant effect in brain, but significant reduction of glucose-6-phosphatase and lactic acid dehydrogenase levels were observed in muscle and liver. These results suggest an inhibition of some key metabolic enzymes resulting from accumulation of the insecticide components in the tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tox.20438 | DOI Listing |
J Nanobiotechnology
January 2025
Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China.
Background: Nano(micro)plastics (NMPs) and agrochemicals are ubiquitous pollutants. The small size and physicochemical properties of NMPs make them potential carriers for pollutants, affecting their bioavailability and impact on living organisms. However, little is known about their interactions in terrestrial ecosystems.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, University of Ilorin, Kwara State, Ilorin, Nigeria.
This study carried out a quantitative structure-activity relationship hazard assessment of the banned pesticides in Nigeria with a view of identifying the dangers posed by these pesticides. Structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs), which link a compound's chemical structure to its biological activity, can be used to create safer and more effective insecticides, prioritize chemicals for testing, and reduce the number of animal studies necessary throughout the regulatory process. The QSAR hazard assessment of the banned pesticides was carried out on the VEGA software.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding 071002, China. Electronic address:
Imidacloprid (IMI), as an emerging pollutant, is frequently detected in pesticide wastewater. Cobalt-based single-atom catalysts (Co-SACs) doped with sulfur atoms can serve as an efficient strategy to activate peroxymonosulfate (PMS) and degrade organic pollutants. The paper employed density functional theory and computational toxicology to deeply explore the mechanism and ecotoxicity of IMI when S atoms were introduced into Co-SACs for PMS activation.
View Article and Find Full Text PDFChemosphere
February 2025
BRIC-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India; BRIC- Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana, India. Electronic address:
Endosulfan (Ed), a widely used organochlorine pesticide, is classified as a persistent organic pollutant (POP). Its long half-life, resistance to degradation, and bioaccumulation in the food chain contaminates soil, water, and air. Such widespread environmental damage triggers monitoring its levels for ensuring compliance with safety regulations and protecting public health.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
The chronic ingestion of pesticide residues through food appears to be a global public health issue, especially in Brazil. This study evaluates 120 menus across six Brazilian institutional restaurants, estimating the allowance of active pesticide ingredients, residue characterization, and chronic exposure risk through food. Data analysis reveals 263 authorized active ingredients, predominantly insecticides (43%), fungicides (40%), and herbicides (14%) for use in 40 foods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!