Calcium-independent phospholipase A2 mediates store-operated calcium entry in rat cerebellar granule cells.

Cerebellum

Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, Germany.

Published: May 2009

Store-operated Ca(2+) entry (SOCE) has been extensively studied in non-neuronal cells, such as glial cells and smooth muscle cells, in which Ca(2+)-independent phospholipase A(2) (iPLA(2)) has been shown to play a key role in the regulation of SOCE channels. In the present study, we have investigated the role of iPLA(2) for store-operated Ca(2+) entry in rat cerebellar granule neurons in acute brain slices using confocal Ca(2+) imaging. Depletion of Ca(2+) stores by cyclopiazonic acid (CPA) induced a Ca(2+) influx, which could be inhibited by SOCE channel blockers 2-aminoethoxy-diphenylborate (2-APB) and 3,5-bistrifluoromethyl pyrazole derivative (BTP2), but not by the voltage-operated Ca(2+) channel blocker diltiazem and by the Na+ channel blocker tetrodotoxin. The inhibitors of iPLA(2), bromoenol lactone (BEL) and 1,1,1-trifluoro-2-heptadecanone, and the selective suppression of iPLA(2) expression by antisense oligodeoxynucleotides, inhibited CPA-induced Ca(2+) influx. Calmidazolium, which relieves the block of inhibitory calmodulin from iPLA(2), elicited a Ca(2+) influx similar to CPA-induced Ca(2+) entry. The product of iPLA(2), lysophosphatidylinositol, elicited a 2-APB- and BTP2-sensitive, but BEL-insensitive, Ca(2+) influx. Spontaneous Ca(2+) oscillations in granule cells in acute brain slices were reduced after inhibiting iPLA(2) activity or by blocking SOCE channels. The results suggest that depletion of Ca(2+) stores activates iPLA(2) to trigger Ca(2+) influx by the formation of lysophospholipids in these neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12311-008-0050-zDOI Listing

Publication Analysis

Top Keywords

ca2+ influx
20
ca2+
13
ca2+ entry
12
entry rat
8
rat cerebellar
8
cerebellar granule
8
granule cells
8
store-operated ca2+
8
ipla2
8
soce channels
8

Similar Publications

Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment.

Sci Adv

January 2025

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.

View Article and Find Full Text PDF

Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.

View Article and Find Full Text PDF

Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!