Human immunodeficiency virus (HIV)-associated dementia (HAD) is a subcortical neuropsychiatric syndrome that has increased in prevalence in the era of highly active antiretroviral therapy (HAART). Several studies demonstrated increased amyloidosis in brains of HIV patients and suggested that there may be a significant number of long-term HIV survivors with co-morbid Alzheimer's disease (AD) in the future. We show HIV-1 Tat protein inhibits microglial uptake of Abeta1-42 peptide, a process that is enhanced by interferon-gamma (IFN-gamma) and rescued by the STAT1 inhibitor (-)-epigallocatechin-3-gallate (EGCG). It is hypothesized that reduced Abeta uptake occurs through IFN-gamma mediated STAT1 activation. This process promotes a switch from a phagocytic to an antigen presenting phenotype in microglia through activation of class II transactivator (CIITA). Additionally, we show that HIV-1 Tat significantly disrupts apolipoprotein-3 (Apo-E3) promoted microglial Abeta uptake. As Tat has been shown to directly interact with the low density lipoprotein (LRP) receptor and thus inhibit the uptake of its ligands including apolipoprotein E4 (Apo-E4) and Abeta peptide in neurons, we further hypothesize that a similar inhibition of LRP may occur in microglia. Future studies will be required to fully characterize the mechanisms underlying IFN-gamma enhancement of HIV-1 Tats disruption of microglial phagocytosis of Abeta and Apo-E3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480563 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!