Our previous study demonstrated the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in transporting bicarbonate that is necessary for sperm capacitation; however, whether its involvement is direct or indirect remains unclear. The present study investigated the possibility of a Cl-/HCO3- exchanger (solute carrier family 26, number 3 [SLC26A3]) operating with CFTR during guinea pig sperm capacitation. Incubating sperm in media with various concentrations of Cl- resulted in varied percentages of capacitated sperm in a concentration-dependent manner. Depletion of Cl-, even in the presence of HCO3-, abolished sperm capacitation and vice versa, indicating the involvement of both anions in the process. Capacitation-associated HCO3--dependent events, including increased intracellular pH, cAMP production, and protein tyrosine phosphorylation, also depend on Cl- concentrations. Similar Cl- dependence and inhibitor sensitivity were observed for sperm-hyperactivated motility and for sperm-egg fusion. The expression and localization of CFTR and SLC26A3 were demonstrated using immunostaining and Western blot analysis. Taken together, our results indicate that Cl- is required for the entry of HCO3- that is necessary for sperm capacitation, implicating the involvement of SLC26A3 in transporting HCO3-, with CFTR providing the recycling pathway for Cl-.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.108.068528 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!