Forisomes are Ca(2+)-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as 'FOR' proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca(2+) and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that 'FOR'-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca(2+) binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582178PMC
http://dx.doi.org/10.1093/pcp/pcn141DOI Listing

Publication Analysis

Top Keywords

fluorescent forisomes
12
proteins
10
sieve element
8
element occlusion
8
seo proteins
8
green fluorescent
8
three proteins
8
forisomes
7
gfp
4
gfp tagging
4

Similar Publications

Identification and molecular analysis of interaction sites in the MtSEO-F1 protein involved in forisome assembly.

Int J Biol Macromol

February 2020

Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany. Electronic address:

Forisomes are large mechanoprotein complexes found solely in legumes such as Medicago truncatula. They comprise several "sieve element occlusion by forisome" (SEO-F) subunits, with MtSEO-F1 as the major structure-forming component. SEO-F proteins possess three conserved domains -an N-terminal domain (SEO-NTD), a potential thioredoxin fold, and a C-terminal domain (SEO-CTD)- but structural and biochemical data are scarce and little is known about the contribution of these domains to forisome assembly.

View Article and Find Full Text PDF

The immobilisation of enzymes plays an important role in many applications, including biosensors that require enzyme activity, stability and recyclability in order to function efficiently. Here we show that forisomes (plant-derived mechanoproteins) can be functionalised with enzymes by translational fusion, leading to the assembly of structures designated as forizymes. When forizymes are expressed in the yeast Saccharomyces cerevisiae, the enzymes are immobilised by the self-assembly of forisome subunits to form well-structured protein bodies.

View Article and Find Full Text PDF

Forisomes are specialized multimeric protein complexes found only in the papilionoid legumes. They undergo a reversible conformational change in response to phloem injury to enable the occlusion of sieve tubes, thus preventing the loss of photoassimilates. The individual subunits are designated by the letters SEO-F (sieve element occlusion by forisomes) and are part of the larger SEO protein family, which also includes the typical P-proteins found in most dicots and some monocots.

View Article and Find Full Text PDF

Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner.

View Article and Find Full Text PDF

This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!