A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Natural movement generation using hidden Markov models and principal components. | LitMetric

Natural movement generation using hidden Markov models and principal components.

IEEE Trans Syst Man Cybern B Cybern

School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea.

Published: October 2008

Recent studies have shown that the perception of natural movements-in the sense of being "humanlike"-depends on both joint and task space characteristics of the movement. This paper proposes a movement generation framework that merges two established techniques from gesture recognition and motion generation-hidden Markov models (HMMs) and principal components-into an efficient and reliable means of generating natural movements, which uniformly considers joint and task space characteristics. Given human motion data that are classified into several movement categories, for each category, the principal components extracted from the joint trajectories are used as basis elements. An HMM is, in turn, designed and trained for each movement class using the human task space motion data. Natural movements are generated as the optimal linear combination of principal components, which yields the highest probability for the trained HMM. Experimental case studies with a prototype humanoid robot demonstrate the various advantages of our proposed framework.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TSMCB.2008.926324DOI Listing

Publication Analysis

Top Keywords

principal components
12
task space
12
movement generation
8
markov models
8
joint task
8
space characteristics
8
natural movements
8
motion data
8
natural
4
natural movement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!