Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To determine whether the receptor for advanced glycation endproducts (RAGE) contributes to cerebral ischemia, we evaluated RAGE expression in human cerebral ischemia and a model of permanent middle cerebral artery occlusion (pMCAO) in rats. Biopsy specimens were obtained from 12 patients with unilateral cerebral infarction. For the pMCAO model, the middle cerebral artery (MCA) of Sprague-Dawley (SD) rats was permanently occluded. Immunohistochemistry and Western blotting were used to measure RAGE expression in the ischemic hemisphere relative to the normal hemisphere. PC12 cells subjected to oxygen and glucose deprivation (OGD) were used to evaluate the role of RAGE in cell injury. As expected, cerebral ischemia patients expressed elevated levels of RAGE in the ischemic hemisphere. In 1 and 2 days pMCAO rats, levels of RAGE were higher in the ischemic hemisphere relative to the non-ischemic hemisphere, and expression was primarily located in the penumbra of the ischemic hemisphere. In PC12 cells, levels of RAGE increased after 7h of OGD culture. Notably, blockade of RAGE with a selective RAGE antibody in vitro reduced the cytotoxicity caused by OGD. The present data suggest that RAGE is up-regulated in human cerebral ischemia and pMCAO rats, suggesting a role for RAGE in brain ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2008.08.077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!