Isolation of potato proteins using simulated moving bed technology.

Biotechnol Bioeng

Department of Biotechnology, Lund University, Lund, Sweden.

Published: December 2008

The simulated moving bed (SMB) concept of chromatography was applied to treat potato juice from production of starch. The aim was to harvest proteins. SMB offers possibilities to operate with different process strategies and in this study it was shown possible to harvest up to 80% of the protein in a process utilizing very little extra water besides that already present in the juice. After depleting protein from the juice in the adsorption step, the flow through was used to recondition the column after elution. The present study illustrates a new concept of applying chromatography as a capturing step of bulk products.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.22012DOI Listing

Publication Analysis

Top Keywords

simulated moving
8
moving bed
8
isolation potato
4
potato proteins
4
proteins simulated
4
bed technology
4
technology simulated
4
bed smb
4
smb concept
4
concept chromatography
4

Similar Publications

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

Macular degeneration (MD), which affects the central visual field including the fovea, has a profound impact on acuity and oculomotor control. We used a motion extrapolation task to investigate the contribution of various factors that potentially impact motion estimation, including the transient disappearance of the target into the scotoma, increased position uncertainty associated with eccentric target positions, and increased oculomotor noise due to the use of a non-foveal locus for fixation and for eye movements. Observers performed a perceptual baseball task where they judged whether the target would intersect or miss a rectangular region (the plate).

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Mueller matrix polarization measurement technique, as a non-invasive and label-free, provides comprehensive optical information on polarization-related and structural characteristics of the measured target. It has been widely applied in biomedical, agricultural, and industrial fields. However, the traditional time-division modulation Mueller matrix measurement method requires multiple measurements, which suffers from long measurement time and susceptibility to cumulative errors from moving parts.

View Article and Find Full Text PDF

This paper introduces a novel approach for the offline estimation of stationary moving average processes, further extending it to efficient online estimation of non-stationary processes. The novelty lies in a unique technique to solve the autocorrelation function matching problem leveraging that the autocorrelation function of a colored noise is equal to the autocorrelation function of the coefficients of the moving average process. This enables the derivation of a system of nonlinear equations to be solved for estimating the model parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!