Sodium alendronate, a member of bisphosphonate class of compounds commonly used for treatment of generalized bone disorders, exists in various hydrated forms. Dehydration of sodium alendronate trihydrate has been studied using variable temperature X-ray powder diffraction technique. The crystal structure of anhydrous sodium alendronate, prepared by heating the trihydrate sodium alendronate at 150 degrees C, has been determined from X-ray powder data using direct space global optimization technique for structure solution, followed by the Rietveld refinement. The structure of the anhydrous form of sodium alendronate is compared with that of the trihydrate form, which was determined previously from single crystal X-ray diffraction data. Both anhydrous and trihydrate sodium alendronate crystallize in monoclinic system with space group P2(1)/n. The crystal structure of the anhydrous sodium alendronate is built by edge-sharing of NaO(6) octahedra into a two-dimensional molecular sheet in the (011) plane, whereas in the trihydrate compound, one-dimensional chain along the (010) direction is generated by corner sharing of NaO(6) octahedra.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.21561DOI Listing

Publication Analysis

Top Keywords

sodium alendronate
32
anhydrous sodium
12
structure anhydrous
12
sodium
8
alendronate
8
x-ray diffraction
8
diffraction data
8
x-ray powder
8
crystal structure
8
trihydrate sodium
8

Similar Publications

Heat-inactivated Lactobacillus casei strain GKC1 Mitigates osteoporosis development in vivo via enhanced osteogenesis.

Biochem Biophys Res Commun

January 2025

Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Food Sciences, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.

Osteoporosis, a significant bone disease predominantly affecting elderly and postmenopausal women, leads to increased bone fragility and fracture risk, presenting a major public health concern with substantial socioeconomic implications. This study investigated the therapeutic potential of Lactobacillus strains, known for their immunomodulatory properties, in an ovariectomy-induced osteoporosis mouse model. Among three tested strains Lactobacillus casei GKC1, Lactobacillus rhamnosus GKLC1, and Lactobacillus johnsonii GKJ2, GKC1 demonstrated superior efficacy in promoting osteogenesis-related gene expression, including alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2).

View Article and Find Full Text PDF

Background: Postmenopausal Osteoporosis (PMOP) is characterized by decreased bone mass and deterioration of bone microarchitecture, leading to increased fracture risk. Current treatments often have adverse effects, necessitating safer alternatives. Kaempferol, a flavonoid identified as a key active component of the traditional Chinese medicine Yishen Gushu formula, has shown promise in improving bone health, but its mechanisms in PMOP treatment remain unclear.

View Article and Find Full Text PDF

Preparation and preclinical evaluation of Ga-labeled alendronate analogs for diagnosis of bone metastases.

Dalton Trans

January 2025

Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.

Bone is one of the most common target organs for distant metastases of solid tumors, which imposes a heavy burden on society. Early diagnosis of bone metastases is of great significance and positron emission tomography (PET) imaging plays an important role in the diagnosis of bone metastases. PET tracers applied for diagnosing bone metastases are constantly being updated, but they all have certain limitations like a relatively low bone/kidney ratio or no capacity to label therapeutic radionuclides.

View Article and Find Full Text PDF

In silico evaluation of bisphosphonates identifies leading candidates for SARS-CoV-2 RdRp inhibition.

J Mol Graph Model

January 2025

School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; Department of Health Sciences, University of York, York, YO10 5DD, UK. Electronic address:

The novel coronavirus disease (COVID-19) pandemic has resulted in 777 million confirmed cases and over 7 million deaths worldwide, with insufficient treatment options. Innumerable efforts are being made around the world for faster identification of therapeutic agents to treat the deadly disease. Post Acute Sequelae of SARS-CoV-2 infection or COVID-19 (PASC), also called Long COVID, is still being understood and lacks treatment options as well.

View Article and Find Full Text PDF

Enhanced Osteoporosis Treatment via Nano Drug Coating Encapsulating GG.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China.

Osteoporosis is the most common systemic skeletal disorder, particularly associated with aging and postmenopausal women. With the growing knowledge about the gut-bone axis, the therapeutic strategies for osteoporosis have been shifted toward regulating gut microbiota to promote positive bone metabolism. Although GG (LGG) is widely reported to positively regulate bone metabolism by restoring the dysbiotic microbiome, oral administration is associated with sensitivity to gastric fluid and low bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!