Purpose: In this study, the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians was studied in different cancer cell lines.
Methods: CvL cytotoxicity was evaluated in mammalian tumor cells and in normal human peripheral blood lymphocytes by the MTT assay using the same range of concentrations (1-150 microg ml(-1)). The mechanisms involved in K562 cell death were investigated by confocal fluorescence microscopy, flow cytometry and immunoblot.
Results: CvL inhibited the growth of human leukemia cells, with IC(50) values of 70 and 100 microg ml(-1) for K562 and JURKAT cells, respectively, but it was ineffective on blood lymphocytes and solid tumor cell lines. K562 cell death occurred 72 h after exposure to the lectin and with signs of apoptosis, as analyzed by DAPI and annexin V/PI staining. Investigation of the possible mediators of this process showed that cell death occurred via a caspase-independent pathway. Confocal fluorescence microscopy indicated a pivotal role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished CvL cytotoxic effect. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFkappaB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and reduced expression of pRb, suggesting that CvL can induce cell cycle arrest.
Conclusions: Collectively, these findings indicate an antileukemic effect for CvL and suggest that cathepsin B acts as a death mediator in CvL-induced cytotoxicity possibly in an uncharacterized connection with the membrane death receptor pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-008-0825-4 | DOI Listing |
Toxicol Mech Methods
January 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India.
Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware.
View Article and Find Full Text PDFBiol Direct
January 2025
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.
View Article and Find Full Text PDFCardiooncology
January 2025
Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Background: Fluoropyrimidines, including 5-fluorouracil and capecitabine, are the most common chemotherapeutic agents for colorectal carcinoma. Although previous studies have suggested varying degrees of cardiotoxicity with these drugs, there is a notable lack of large-scale investigations with appropriate control groups. This study aimed to evaluate cardiovascular outcome among colorectal carcinoma patients treated with fluoropyrimidines.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.
This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
The First Hospital of Lanzhou University, Lanzhou, China.
Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.
Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!