Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cell-penetrating peptides (CPPs) could potentially be used as vectors for intracellular delivery of proteins, peptides and nucleic acids. The present study examined different CPPs, such as TAT-derived and arginine rich sequences, as well as model amphiphilic peptide, with respect to transfection efficiency of pegylated polyethylenimine (PEI) in A549, Calu-3 cells and in mice after intra-tracheal administration.
Methods: The conjugates were prepared by the coupling of CPPs to PEI via a heterobifunctional polyethylene glycol (PEG) linker, resulting in the bioconjugates CPP-PEG-PEI. Structures were successfully confirmed by (1)H-nuclear magnetic resonance and diffusion-ordered spectroscopy. Unmodified PEI 25 kDa was compared with pegylated PEI, and aggregation tendency in cell culture medium, interaction with mucin and stability against heparin was assayed. After evaluating transfection efficiency of the polymers in two different lung cell lines, luciferase reporter gene expression was determined in mouse lungs.
Results: All conjugates showed superior transfection efficiency compared to unmodified PEI 25 kDa. The conjugates sizes were generally < 300 nm, thus enabling them to penetrate through the mucus lining of the lung and reach the target cells. Coupling of CPPs to PEG-PEI, however, did not significantly improve transfection efficiency in A549 cells, calu-3 cells and in mouse lungs.
Conclusions: We show that small and stable polyplex size achieved by pegylation is favourable for successful pulmonary gene delivery. Compared to PEI 25 kDa, pegylated PEI and CPP-PEG-PEI displayed enhanced transfection efficiency both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jgm.1255 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!