[Pharmacology of neuroprotection in acute ischemic stroke].

Rev Neurol

Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, España.

Published: November 2008

Introduction: Stroke leads the list of causes of disability in adults and represents the second leading cause of death worldwide. Knowledge about the pathophysiology of ischemic stroke has improved substantially over the past 25 years, and, as a result of this, new therapeutic strategies have been developed with two main aims: restoration of cerebral flow and the minimization of the deleterious effects of ischemia on neurons. Although so far there are no drugs approved for the neuroprotection therapy in stroke, there are some compounds with promising results.

Development: This paper makes a critical review of several studies on the preclinical stroke neuroprotection with drugs aimed to protect the brain tissue adjacent to the damaged central area or ischemic penumbra zone until either the physiological mechanisms or the treatment stop the ischemic insult. We expose the potential neuroprotective properties of these treatments mainly based on inhibiting excitotoxicity processes mediated by gamma-aminobutyric acid receptors, glutamate release and interacting with ion channels such as calcium and sodium. We focus on drugs which have shown to be capable of modulating intracellular degenerative pathways in mitochondria mediated apoptosis or the expression of apoptotic proteins in experimental models.

Conclusion: It is very likely that the neuroprotective effects require a poly-drug therapy that combines different mechanisms of action.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[pharmacology neuroprotection
4
neuroprotection acute
4
ischemic
4
acute ischemic
4
ischemic stroke]
4
stroke] introduction
4
stroke
4
introduction stroke
4
stroke leads
4
leads list
4

Similar Publications

Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway.

Drug Des Devel Ther

January 2025

Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.

View Article and Find Full Text PDF

Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders.

ACS Pharmacol Transl Sci

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion (I/R) is a serious complication in patients with ischemic stroke. Senkyunolide A (SenA) can alleviate neuronal cell damage induced by cerebral I/R; however, the exact action mechanism remains unclear. An in vitro cellular injury model was established by inducing PC-12 cells with OGD/R.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a type of neurodegenerative illness in which β-amyloid (Aβ) and tau protein accumulate in neurons in the form of tangles. The pathophysiological pathway of AD consists of Aβ-amyloid peptides, tau proteins, and oxidative stress in neurons and increased neuro-inflammatory response. Food and Drug Administration in the United States has authorized various drugs for the effective treatment of AD, which include galantamine, rivastigmine, donepezil, memantine, sodium oligomannate, lecanemab, and aducanumab.

View Article and Find Full Text PDF

Purpose: We aimed to investigate the role of gallic acid treatment on spinal cord tissues after spinal cord injury (SCI) and its relationship with endoplasmic reticulum (ER) stress by histochemical, immunohistochemical, and in-silico techniques.

Methods: Thirty female Wistar albino rats were divided into three groups: sham, SCI, and SCI+gallic acid. SCI was induced by dropping a 15-g weight onto the exposed T10-T11 spinal cord segment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!