The success of antiretroviral therapy has reduced the incidence of severe neurological complication resulting from human immunodeficiency virus (HIV) infection. However, increased patient survival has been associated with an increased prevalence of protracted forms of HIV encephalitis leading to moderate cognitive impairment. NeuroAIDS remains a great challenge to patients, their families, and our society. Thus development of preclinical models that will be suitable for testing promising new compounds with neurotrophic and neuroprotective capabilities is of critical importance. The simian immunodeficiency virus (SIV)-infected macaque is the premiere model to study HIV neuropathogenesis. This model was central to the seminal work of Dr. Opendra "Bill" Narayan. Similar to patients with HIV encephalitis, in the SIV model there is injury to the synaptodendritic structure of excitatory pyramidal neurons and inhibitory calbindin-immunoreactive interneurons. This article, which is part of a special issue of the Journal of NeuroVirology in honor of Dr. Bill Narayan, discusses the most important neurodegenerative features in preclinical models of neuroAIDS and their potential for treatment development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562423 | PMC |
http://dx.doi.org/10.1080/13550280802132840 | DOI Listing |
Pediatr Infect Dis J
January 2025
Public Health Secretariat, Department of Health, Generalitat de Catalunya, Barcelona, Spain.
Background: In Catalonia, infants <6 months old were eligible to receive nirsevimab, a novel monoclonal antibody against respiratory syncytial virus (RSV). We aimed to analyze nirsevimab's effectiveness in hospital-related outcomes of the seasonal cohort (born during the RSV epidemic from October to January 2024) and compared them with the catch-up cohort (born from April to September 2023).
Methods: Retrospective cohort study of all infants born between October 1, 2023, and January 21, 2024, according to their immunization with nirsevimab (immunized and nonimmunized).
PLOS Digit Health
January 2025
Johnson & Johnson Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium.
While the incidence of Human Immunodeficiency Virus (HIV) infection is decreasing in most age groups worldwide, it is rising among adolescents and young adults, who also face a higher rate of HIV-related deaths. This tech-savvy demographic may benefit from an online patient portal designed to enhance patient activation-empowering them to manage their health independently. However, the effectiveness of such digital health interventions on young HIV patients in Kenya remains uncertain.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Epitope mapping has shown that early antibody responses are directed to easily accessible nonneutralizing epitopes on Env instead of bnAb epitopes. Autologously neutralizing antibody responses appear upon boosting, once immunodominant epitopes are saturated.
View Article and Find Full Text PDFOpen Med (Wars)
December 2024
Department of Pulmonary and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China.
Introduction: Recurrent opportunistic infections are particularly common in patients infected with human immunodeficiency virus (HIV). However, these opportunistic infections have also been reported in HIV-negative patients, especially those with primary immunodeficiency disorder (PID), a condition that involves a large heterogeneous group of disorders arising from defects in immune system development and/or function.
Case: Here, we report a very rare case of recurrent opportunistic infections in a non-HIV-infected patient combined with mutations in complement component C6 and nuclear factor kB subunit 1 ().
NEJM AI
October 2024
Google, Mountain View, CA, USA.
Background: Using artificial intelligence (AI) to interpret chest X-rays (CXRs) could support accessible triage tests for active pulmonary tuberculosis (TB) in resource-constrained settings.
Methods: The performance of two cloud-based CXR AI systems - one to detect TB and the other to detect CXR abnormalities - in a population with a high TB and human immunodeficiency virus (HIV) burden was evaluated. We recruited 1978 adults who had TB symptoms, were close contacts of known TB patients, or were newly diagnosed with HIV at three clinical sites.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!