With an increased awareness and concern for varying toxicities of the different chemical forms of environmental contaminants such as selenium and arsenic, effective methodologies for speciation are paramount. In general, chromatographic methodologies have been developed using a particular detection system and a unique matrix for single element speciation. In this study, a routine method to speciate selenium and arsenic in a variety of "real world" matrices with elemental and molecular mass spectrometric detection has been successfully accomplished. Specifically, four selenium species, selenite, selenate, selenomethionine and selenocystine, and four arsenic species, arsenite, arsenate, monomethlyarsonate and dimethylarsinate, were simultaneously separated using ion-pairing reversed phase chromatography coupled with inductively coupled plasma and electrospray ionization ion trap mass spectrometry. Using tetrabutylammonium hydroxide as the ion-pairing reagent on a C(18) column, the separation and re-equilibration time was attained within 18min. To illustrate the wide range of possible applications, the method was then successfully applied for the detection of selenium and arsenic species found naturally and spiked in river water, plant extract and urine matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.08.077DOI Listing

Publication Analysis

Top Keywords

selenium arsenic
16
ion-pairing reversed
8
reversed phase
8
phase chromatography
8
inductively coupled
8
coupled plasma
8
plasma electrospray
8
electrospray ionization
8
ionization ion
8
ion trap
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!