Interferons (IFNs) play a role in innate immunity during many viral, bacterial, and protozoal infections. With the increasing threat of bioterrorist attacks with Bacillus anthracis, its high lethality, and the limited effectiveness of antibiotics, alternative treatments are being studied. Antibodies to protective antigen (PA) are promising, as is IFN. During many bacterial infections, production of and protection by IFNs has been reported, including B. anthracis in vitro. In vivo, we find that (1) the type I IFN inducer, Poly-ICLC, strongly and rapidly protects mice; (2) the protection is IFN-mediated since recombinant murine IFN-beta can protect, and protection by Poly-ICLC is abrogated in IFN type I receptor knockout mice. The greatest protection by Poly-ICLC was conferred by intranasal treatment. A delay in death was observed with the intramuscular route alone, but was not significant. Together, the results suggest the IFN defense could protect mice, up to 60%, against lethal inhalational anthrax, and thus have important medical implications for therapy of human anthrax.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988465 | PMC |
http://dx.doi.org/10.1089/jir.2007.0143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!