We present direct evidence for low temperature associative charge transfer (ACT) reactions of acetylene onto the benzene cation that catalyze the conversion of acetylene molecules into polymerized cations and for high temperature addition/elimination reactions that lead to the generation of naphthalene-type ions. At low temperatures acetylene molecules bind noncovalently to the benzene cation, where partial charge transfer from the ion activates an acetylene molecule for addition polymerization with other associated acetylene molecules, thus amounting to catalytic cyclization/polymerization of the acetylene molecules. At high temperatures the barrier of the covalent addition of acetylene to the benzene cation to form a styrene-type ion is measured as 3.5 kcal/mol. The second acetylene addition followed by H elimination to form a naphthalene-type ion is calculated to be highly exothermic and without a barrier. These reactions can explain the formation of complex organics by gas phase ion-molecule reactions under a wide range of temperatures and pressures in astrochemical environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja803282cDOI Listing

Publication Analysis

Top Keywords

acetylene molecules
16
benzene cation
12
acetylene
9
formation complex
8
complex organics
8
charge transfer
8
acetylene benzene
8
organics acetylene
4
acetylene catalyzed
4
catalyzed ionized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!