Purpose: To apply fiber tractography to assess the effect of a possible antiglioma drug, phenyl N-tert-butyl nitrone (PBN), on glioma-affected neuronal fibers. The fiber tractography method was able to differentiate between different tumor types, such as the C6 and F98 rat glioma models.

Materials And Methods: C6 or F98 cells were intracranially injected into the cortex of male Fischer 344 rats. PBN treatment was initiated before or after cell implantation. Tumor growth was monitored with diffusion tensor imaging (DTI) and fiber tractography using diffusion-weighting gradients in 30 noncolinear directions.

Results: Although proton density-weighted (PDw) and T2-weighted (T2w) images did not show any difference between C6 and F98 gliomas without edema, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps were able to discriminate between these two tumor models. Fiber tractography was used to visualize C6 glioma-induced ischemia of tumor-surrounding tissues, whereas F98 glioma was found to infiltrate and penetrate into the corpus callosum (CC). During glioma growth, neuronal fibers were found to disappear at the border regions between the tumor and surrounding tissues. PBN treatment was shown to inhibit glioma growth with accompanying changes in the surrounding tissue.

Conclusion: By noninvasively monitoring the degree of neuronal fiber integrity and connectivity with the use of neuronal fiber tractography, we were able to evaluate the protective effect of PBN against invasive glioma growth in rat brains. PBN provided protection of the neuronal fibers against tumor-induced ischemia and tumor invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.21474DOI Listing

Publication Analysis

Top Keywords

fiber tractography
24
neuronal fibers
12
glioma growth
12
f98 gliomas
8
diffusion tensor
8
pbn treatment
8
neuronal fiber
8
fiber
7
tractography
6
f98
5

Similar Publications

Multidimensional structural analyses revealed a correlation between thalamic atrophy and white matter degeneration in idiopathic dystonia.

Brain Commun

January 2025

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.

Although aberrant changes in grey and white matter are core features of idiopathic dystonia, few studies have explored the correlation between grey and white matter changes in this disease. This study aimed to investigate the coupling correlation between morphological and microstructural alterations in patients with idiopathic dystonia. Structural T1 imaging and diffusion tensor imaging were performed on a relatively large cohort of patients.

View Article and Find Full Text PDF

Background: The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.

Purpose: In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.

View Article and Find Full Text PDF

Neural connectivity underlying core language functions.

Brain Lang

January 2025

Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA; Neurology Service, North Florida/South GeorgiaUSA Veterans Health System and Department of Neurology, University of Florida, Gainesville, FL 32608, USA. Electronic address:

Introduction: Although many white matter tracts underlying language functions have been identified, even in aggregate they do not provide a sufficiently detailed and expansive picture to enable us to fully understand the computational processes that might underly language production and comprehension. We employed diffusion tensor tractography (DTT) with a tensor distribution model to more extensively explore the white matter tracts supporting core language functions. Our study was guided by hypotheses stemming largely from the aphasia literature.

View Article and Find Full Text PDF

Background: Thick fetal corpus callosum (CC) is a rare finding and its significance in isolation is not clear. In this retrospective study, we aim to gain insight into the microarchitecture of CC in a cohort of fetuses with thick and short CC (isolated or associated with mild extra-/intracranial abnormalities) as seen on ultrasound (US), by using prenatal magnetic resonance (MR) diffusion tensor imaging (DTI) with fiber tractography, thereby allowing better characterization for postnatal prognosis.

Methods: Twelve fetuses met the inclusion criteria on US.

View Article and Find Full Text PDF

White Matter Tract Crossing and Bottleneck Regions in the Fetal Brain.

Hum Brain Mapp

January 2025

Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.

There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been investigated for adult brains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!