We have established structure-activity relationships of novel truncated D-4'-thioadenosine derivatives from D-mannose as potent and selective A(3) adenosine receptor (AR) antagonists. At the human A(3) AR, most of N(6)-substituted analogues showed high potency and selectivity and acted as pure antagonists in a cyclic AMP functional assay. Among compounds tested, 2-chloro-N(6)-3-chlorobenzyl and N(6)-3-chlorobenzyl analogues displayed very high binding affinities (K(i) = 1.66 nM and 1.5 nM, respectively) at the human A(3) AR. Truncated 4'-thioadenosine derivatives studied here are regarded as an excellent template for the design of novel A(3) AR antagonists to act at both human and murine species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097420PMC
http://dx.doi.org/10.1093/nass/nrn324DOI Listing

Publication Analysis

Top Keywords

truncated 4'-thioadenosine
8
4'-thioadenosine derivatives
8
potent selective
8
selective adenosine
8
adenosine receptor
8
receptor antagonists
8
antagonists human
8
design synthesis
4
synthesis truncated
4
derivatives potent
4

Similar Publications

Article Synopsis
  • This study focused on how the adenosine A3 receptor (A3AR) influences the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) through the regulation of immune cells, particularly pro-inflammatory Kupffer cells derived from monocytes (MoKCs).
  • Researchers found that inhibiting A3AR, either through a drug called FM101 or by genetic deletion, significantly improved liver inflammation and fibrosis in model mice.
  • The results suggest that targeting A3AR may offer a novel therapeutic approach for treating MASLD by inducing cell death (necroptosis) in harmful immune cells, thereby promoting a healthier liver environment.
View Article and Find Full Text PDF

Based on high binding affinity of truncated 2-hexynyl-4'-thioadenosine (3 a) at both A adenosine receptor (AR) and A AR, we explored structure-activity relationship (SAR) of the C2-substitution by altering chain length of the 2-hexynyl moiety, thereby evaluating the hydrophobic pocket size. A series of truncated N-substituted 4'-thioadenosine derivatives with C2-alkynyl substitution were successfully synthesized from D-mannose, using a palladium-catalyzed Sonogashira coupling reaction as the key step, whose structures were confirmed by the X-ray crystal structure of 4 h. As the size of the alkynyl group at the C2-position increased, the binding affinity improved; however, when the substituted group was larger than hexynyl, the binding affinity decreased.

View Article and Find Full Text PDF

Stereochemical influence of 4'-methyl substitutions on truncated 4'-thioadenosine derivatives: Impact on A adenosine receptor binding and antagonism.

Bioorg Chem

December 2024

Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea. Electronic address:

Herein, we investigated the stereochemical effects of 4'-methyl substitution on A adenosine receptor (AAR) ligands by synthesizing and evaluating a series of truncated 4'-thioadenosine derivatives featuring 4'-α-methyl, 4'-β-methyl, and 4',4'-dimethyl substitutions. We successfully synthesized these derivatives, using the stereoselective addition of an organometallic reagent, KSAc-mediated sulfur cyclization, and Vorbrüggen condensation. Binding assays demonstrated that the 4'-β-methyl substitution conferred the highest affinity for AAR, with compound 1 h exhibiting a K = 3.

View Article and Find Full Text PDF

Design, synthesis, and anticancer activity of C8-substituted-4'-thionucleosides as potential HSP90 inhibitors.

Bioorg Med Chem

August 2016

Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea. Electronic address:

A series of C8-substituted-4'-thioadenosine analogs 3a-3g, 15, and 17 and their truncated derivatives 4a-4j, 23-25, and 27 have been successfully synthesized from d-ribose and d-mannose, respectively, employing Pummerer type or Vorbrüggen condensation reactions and the functionalization at the C8-position of nucleobase via Stille coupling or nucleophilic aromatic substitution reactions as key steps. All the synthesized compounds were assayed for their HSP90 inhibitory activity, but they were found to be inactive up to 100μM. However, the 8-iodo derivatives 15, 17, and 27 exhibited potent anticancer activity, indicating that different mechanism of action might be involved in their biological activity.

View Article and Find Full Text PDF

Truncated N(6)-substituted-4'-oxo- and 4'-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A(2A) and A(3) adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross-coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA(2A)AR, but hydrophobic C8 substitution abolished binding at the hA(2A)AR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!