The role of matrix mechanics on cell behavior is under intense investigation. Cells exert contractile forces on their matrix and the matrix elasticity can alter these forces and cell migratory behavior. However, little is known about the contribution of matrix mechanics and cell-generated forces to stable cell-cell contact and tissue formation. Using matrices of varying stiffness and measurements of endothelial cell migration and traction stresses, we find that cells can detect and respond to substrate strains created by the traction stresses of a neighboring cell, and that this response is dependent on matrix stiffness. Specifically, pairs of endothelial cells display hindered migration on gels with elasticity below 5500 Pa in comparison to individual cells, suggesting these cells sense each other through the matrix. We believe that these results show for the first time that matrix mechanics can foster tissue formation by altering the relative motion between cells, promoting the formation of cell-cell contacts. Moreover, our data indicate that cells have the ability to communicate mechanically through their matrix. These findings are critical for the understanding of cell-cell adhesion during tissue formation and disease progression, and for the design of biomaterials intended to support both cell-matrix and cell-cell adhesion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2599854 | PMC |
http://dx.doi.org/10.1529/biophysj.107.127662 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, Rutgers University, Newark, New Jersey 07102, United States of America.
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, Lebanese International University, Beirut P.O. Box 146404, Lebanon.
The integration of liveness detection into biometric systems is crucial for countering spoofing attacks and enhancing security. This study investigates the efficacy of photoplethysmography (PPG) signals, which offer distinct advantages over traditional biometric techniques. PPG signals are non-invasive, inherently contain liveness information that is highly resistant to spoofing, and are cost-efficient, making them a superior alternative for biometric authentication.
View Article and Find Full Text PDFFoods
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain.
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Liaoning Engineering and Technology Research Center for Insect Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
Chitin deacetylases (CDAs) are carbohydrate esterases associated with chitin metabolism and the conversion of chitin into chitosan. Studies have demonstrated that chitin deacetylation is essential for chitin organization and compactness and therefore influences the mechanical and permeability properties of chitinous structures, such as the peritrophic membrane (PM) and cuticle. In the present study, two genes ( and ) encoding CDA protein isoforms were identified and characterized in Chinese oak silkworm () larvae.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.
Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!