We tested the hypothesis that urea, an osmolyte accumulated early in hibernation, functions as a cryoprotectant in the freeze-tolerant wood frog, Rana sylvatica. Relative to saline-treated, normouremic (10 micromol ml(-1)) frogs, individuals rendered hyperuremic (70 micromol ml(-1)) by administration of an aqueous urea solution exhibited significantly higher survival (100% versus 64%) following freezing at -4 degrees C, a potentially lethal temperature. Hyperuremic frogs also had lower plasma levels of intracellular proteins (lactate dehydrogenase, creatine kinase, hemoglobin), which presumably escaped from damaged cells, and more quickly recovered neurobehavioral functions following thawing. Experimental freezing-thawing did not alter tissue urea concentrations, but did elevate glucose levels in the blood and organs of all frogs. When measured 24 h after thawing commenced, glucose concentrations were markedly higher in urea-loaded frogs as compared to saline-treated ones, possibly because elevated urea retarded glucose clearance. Like other low-molecular-mass cryoprotectants, urea colligatively reduces both the amount of ice forming within the body and the osmotic dehydration of cells. In addition, by virtue of certain non-colligative properties, it may bestow additional protection from freeze-thaw damage not afforded by glucose.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.019695DOI Listing

Publication Analysis

Top Keywords

micromol ml-1
8
urea
6
urea loading
4
loading enhances
4
enhances freezing
4
freezing survival
4
survival postfreeze
4
postfreeze recovery
4
recovery terrestrially
4
terrestrially hibernating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!