Recent, primarily structural observations indicate that related viruses, harboring no sequence similarity, infect hosts of different domains of life. One such clade of viruses, defined by common capsid architecture and coat protein fold, is the so-called PRD1-adenovirus lineage. Here we report the structure of the marine lipid-containing bacteriophage PM2 determined by crystallographic analyses of the entire approximately 45 MDa virion and of the outer coat proteins P1 and P2, revealing PM2 to be a primeval member of the PRD1-adenovirus lineage with an icosahedral shell and canonical double beta barrel major coat protein. The view of the lipid bilayer, richly decorated with membrane proteins, constitutes a rare visualization of an in vivo membrane. The viral membrane proteins P3 and P6 are organized into a lattice, suggesting a possible assembly pathway to produce the mature virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2008.06.026 | DOI Listing |
J Agromedicine
January 2025
ICAR, Central Marine Fisheries Research Institute, FRAEED, Ernakulam, India.
Objective: Marine fishing ranks among the most hazardous occupations globally, with risks intensifying for small-sized vessels venturing deeper into the sea due to the scarcity of near-shore fish and high market demand. This study identifies various occupational hazards and the use of safety equipment among small-scale motorized fishers using traditional fishing methods in the southernmost coastal regions of India.
Methods: The primary data were collected from 253 artisanal small-scale motorized fishers through a multi-stage stratified random sampling method.
PeerJ
January 2025
Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America.
Marine heatwaves are starting to occur several times a decade, yet we do not understand the effect this has on corals across biological scales. This study combines tissue-, organism-, and community-level analyses to investigate the effects of a marine heatwave on reef-building corals. Adjacent conspecific pairs of coral colonies of and that showed contrasting phenotypic responses (, bleached .
View Article and Find Full Text PDFPeerJ
January 2025
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America.
Matrix population models are essential tools in conservation biology, offering key metrics to guide species management and conservation planning. However, the development of these models is often limited by insufficient life history data, particularly for non-charismatic species. This study addresses this gap by using life history data from FishBase and the FishLife R package, complemented by size-dependent natural mortality estimates, to parameterize age-structured matrix population models applicable to most fish species.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China.
The massive production and widespread use of plastics have resulted in a growing marine plastic pollution problem. Cold seep ecosystems are maintained by microorganisms related to nitrogen and carbon cycling that occur in deep-sea areas, where cold hydrocarbon-rich water seeps from the ocean floor. Little is known about plastic pollution in this ecosystem.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!