Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dorsal axial formation during vertebrate embryogenesis exhibits robust resistance to perturbations in patterning signals. However, how such stability is supported at the molecular level remains largely elusive. Here we show that Xenopus ONT1, an Olfactomedin-class secreted protein, stabilizes axial formation by restricting Chordin activity on the dorsal side. When ONT1 function is attenuated, the embryo becomes hyperdorsalized by a normally subeffective dose of Chordin. ONT1 binds Chordin and BMP1/Tolloid-class proteinases (B1TP) via distinct domains and acts as a secreted scaffold that enhances B1TP-mediated Chordin degradation by facilitating enzyme-substrate association. ONT1 is indispensable for fine-tuning BMP signaling in the axial tissue, and a similar role has been suggested for dorsally expressed BMPs such as ADMP. Simultaneous inhibition of ONT1 and dorsally expressed BMPs (ADMP and BMP2) synergistically caused drastic dorsalization. These results indicate that stable axial formation depends on two compensatory regulatory pathways involving ONT1/B1TP and dorsally expressed BMPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2008.07.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!