Dye-sensitized solar cells fabricated using ordered arrays of titania nanotubes (tube lengths 5, 10, and 20 microm) grown on titanium have been characterized by a range of experimental methods. The collection efficiency for photoinjected electrons in the cells is close to 100% under short circuit conditions, even for a 20 microm thick nanotube array. Transport, trapping, and back transfer of electrons in the nanotube cells have been studied in detail by a range of complementary experimental techniques. Analysis of the experimental results has shown that the electron diffusion length (which depends on the diffusion coefficient and lifetime of the photoinjected electrons) is of the order of 100 microm in the titania nanotube cells. This is consistent with the observation that the collection efficiency for electrons is close to 100%, even for the thickest (20 microm) nanotube films used in the study. The study revealed a substantial discrepancy between the shapes of the electron trap distributions measured experimentally using charge extraction techniques and those inferred indirectly from transient current and voltage measurements. The discrepancy is resolved by introduction of a numerical factor to account for non-ideal thermodynamic behavior of free electrons in the nanostructured titania.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja804852z | DOI Listing |
Heliyon
January 2025
Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
In response to escalating global concerns over environmental pollution, the development of green dye-sensitized solar cells (DSSCs) has emerged as a promising technology for solar energy conversion. This study harnesses the potential of rice husk, an abundant agricultural waste in Indonesia, by extracting lignin through a simple recycling method. Lignin acts as a natural, non-toxic dopant and template for TiO₂ composites, enhancing the stability of the photoanode in DSSCs.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
Top Curr Chem (Cham)
December 2024
Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push-pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. Electronic address:
The quick and precise estimation of D-π-A Organic Dye absorption maxima in different solvents is an important challenge for the efficient design of novel chemical structures that could improve the performance of dye-sensitized solar cells (DSSCs) and related technologies. Time-Dependent Density Functional Theory (TD-DFT) has often been employed for these predictions, but it has limitations, including high computing costs and functional dependence, particularly for solvent interactions. In this study, we introduce a high-accuracy and rapid deep-learning ensemble method using daylight fingerprints as chemical descriptors to predict the absorption maxima (λ) of D-π-A organic dyes in 18 different solvent environments.
View Article and Find Full Text PDFDalton Trans
December 2024
Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
This article reports the development of CuO|CuBiO photocathodes stabilized by protective layers of TiO, MgO, or NiO, with Pt or MoS nanoparticles serving as co-catalysts to facilitate H evolution. Most notably, this work demonstrates the first application of MgO as a protection/passivation layer for photocathodes in a water-splitting cell. All configurations of photocathodes were studied structurally, morphologically, and photoelectrochemically revealing that CuO|CuBiO|MgO|Pt photocathodes achieve the highest stable photocurrent densities of -200 μA cm for over 3 hours with a Faradaic efficiency of ∼90%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!