Trace element mobility in soils seven years after the Aznalcóllar mine spill.

Chemosphere

Department of Environmental Geochemistry, IRNASA, CSIC, Apto. 257, 37071 Salamanca, Spain.

Published: November 2008

The long-term influence of the Aznalcóllar mine spill on soils was studied seven years after the accident in the area of Vado del Quema. Soils where the pyritic sludge was not removed after the cleaning operations and soils where this process was accomplished successfully were sampled and studied in detail. Sludge and soil horizons were characterised, determining their physico-chemical parameters, mineralogy and the total concentrations of major and trace elements. Moreover, leaching studies were performed using batch tests. The main mineralogical changes detected in the soil beneath the weathered sludge are the neo-formation of jarosite, gypsum and sainfeldite, together with the almost total depletion of calcite. An important acidification of soil has been also produced, especially in the uppermost soil layers. These two factors show to be the main responsible for the vertical distribution and leachability displayed by trace elements. Critical total concentrations were found for most trace elements in the soil still affected by the sludge weathering. Furthermore, the Cd and Zn leachable contents showed to be extremely high. Therefore, in those areas affected by the mine spill where the removal of sludge was not accomplished properly, special care should be paid to trace elements highly mobile in acidic conditions. Additional restoration measures should be undertaken to avoid further pollutant dispersion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.07.028DOI Listing

Publication Analysis

Top Keywords

trace elements
16
mine spill
12
aznalcóllar mine
8
total concentrations
8
trace
5
sludge
5
soil
5
trace element
4
element mobility
4
soils
4

Similar Publications

Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Cell Biol Toxicol

January 2025

Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.

Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.

View Article and Find Full Text PDF

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.

View Article and Find Full Text PDF

A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.

View Article and Find Full Text PDF

Simultaneous Copper and EDTA Ligands Recovery from Electroless Effluent with Metallic Copper and Formaldehyde.

Environ Sci Technol

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.

The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!