Fibroblast growth factors play important roles in inner ear development. Previous studies showed that mouse Fgf16 is expressed asymmetrically during the otic cup and vesicle stages of development, suggesting roles in regulating or responding to anteroposterior axial cues. Here, we studied otic Fgf16 expression throughout embryonic development and found transcripts in the developing cristae and in a few cells in the lateral wall of the cochlear duct. To determine the otic function of Fgf16 and to follow the fate of Fgf16-expressing cells, we generated an Fgf16(IRESCre) allele. We show that Fgf16 does not have a unique role in inner ear development and that the Fgf16 lineage is found throughout the three cristae, in portions of the semicircular canal ducts, and in the cochlear spiral prominence epithelial cells. This strain will be useful for gene ablations in these tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692467PMC
http://dx.doi.org/10.1002/dvdy.21681DOI Listing

Publication Analysis

Top Keywords

inner ear
12
spiral prominence
8
ear development
8
fgf16
5
fgf16irescre mice
4
mice tool
4
tool inactivate
4
inactivate genes
4
genes expressed
4
expressed inner
4

Similar Publications

The inner ear of teleost fishes is known to serve both auditory and vestibular functions. Many studies have compared otoliths from different species and attempted to understand the observed differences within the light of environmental factors. However, experimental data on how otoliths could adapt are scarce.

View Article and Find Full Text PDF

During cochlear implant (CI) surgery, it is desirable to perform intraoperative measurements such as Electrocochleography (ECochG) to monitor the inner ear function and thereby to support the preservation of residual hearing. However, a significant challenge arises as the recording location of intracochlear ECochG via the CI electrode changes during electrode insertion. This study aimed to investigate the relationships between intracochlear ECochG recordings, the position of the recording contact within the cochlea relative to its anatomy, and the implications for frequency and residual hearing preservation.

View Article and Find Full Text PDF

Hair cells (HCs) are essential for vestibular function, and irreversible damage to vestibular HCs in mammals is closely associated with vertigo. The stimulation of HC regeneration through exogenous gene delivery represents an ideal therapeutic approach for restoring vestibular function. Overexpression of Atoh1, Pou4f3, and Gfi1 (collectively referred to as APG) has demonstrated efficacy in promoting HC regeneration in the cochlea.

View Article and Find Full Text PDF

The plainfin midshipman fish (Porichthys notatus) relies on the production and reception of social acoustic signals for reproductive success. During spawning, male midshipman produce long duration advertisement calls to attract females, which use their auditory sense to locate and access calling males. While seasonal changes based on reproductive state in inner-ear auditory sensitivity and frequency encoding in midshipman is well documented, little is known about reproductive-state dependent changes in central auditory sensitivity and auditory neural responsiveness to conspecific advertisement calls.

View Article and Find Full Text PDF

Cochlear inner hair cells (IHCs) and outer hair cells (OHCs) require different transcription factors for their cell fate stabilization and survival, suggesting separate mechanisms are involved. Here, we found that the transcription factor Casz1 was crucial for early IHC fate consolidation and for OHC survival during mouse development. Loss of Casz1 resulted in transdifferentiation of IHCs into OHCs, without affecting OHC production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!