Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, fabrication of nano-scale 3-D features by total internal reflection generated single exposure counter propagating multiple evanescent waves interference lithography (TIR-MEWIL) in a positive tone resist is investigated numerically. Using a four incident plane waves configuration from an 364nm wavelength illumination source, the simulated results indicate that the proposed technique shows potential in realizing periodic surface relief features with diameter as small as 0.08lambda and height-to-diameter aspect ratio as high as 10. It is also demonstrated that the sensitivity of multiple evanescent waves' interference depends on the polarization and phase of the incident plane waves, and can be tailored to obtain different geometry features. A modified cellular automata algorithm has been employed to simulate three-dimensional photoresist profiles that would result from exposure to the studied evanescent waves interference configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.013857 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!