The development of voltage-sensitive dyes has revolutionized cardiac electrophysiology and made optical imaging of cardiac electrical activity possible. Photon diffusion models coupled to electrical excitation models have been successful in qualitatively predicting the shape of the optical action potential and its dependence on subsurface electrical wave orientation. However, the accuracy of the diffusion equation in the visible range, especially for thin tissue preparations, remains unclear. Here, we compare diffusion and Monte Carlo (MC) based models and we investigate the role of tissue thickness. All computational results are compared to experimental data obtained from intact guinea pig hearts. We show that the subsurface volume contributing to the epi-fluorescence signal extends deeper in the tissue when using MC models, resulting in longer optical upstroke durations which are in better agreement with experiments. The optical upstroke morphology, however, strongly correlates to the subsurface propagation direction independent of the model and is consistent with our experimental observations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.013758DOI Listing

Publication Analysis

Top Keywords

subsurface electrical
8
electrical wave
8
wave orientation
8
monte carlo
8
optical upstroke
8
reconstructing subsurface
4
electrical
4
orientation cardiac
4
cardiac epi-fluorescence
4
epi-fluorescence recordings
4

Similar Publications

Microplastic types dominate the effects of bismuth oxide semi-conductor nanoparticles on their transport in saturated quartz sand.

J Hazard Mater

January 2025

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:

The transport of microplastics (MPs) is of great significance due to its potential threat to subsurface systems. The copresence of MPs and semi-conductor nanoparticles is quite common in practical environments (i. e.

View Article and Find Full Text PDF

Geophysical techniques have become increasingly crucial for characterizing landfills, offering noninvasive methods for subsurface exploration and contamination assessment. In this study, an integrated geophysical approach-utilizing magnetic, electrical resistivity tomography (ERT), and transient electromagnetic (TEM) surveys-was employed to characterize the Weidenpesch landfill in Cologne, Germany and assess potential groundwater contamination. The results from these methods were consistent, effectively delineating the landfill boundaries and identifying possible contamination.

View Article and Find Full Text PDF

Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris.

Cell Tissue Res

December 2024

Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site.

View Article and Find Full Text PDF

Correction methods and applications of ERT in complex terrain.

MethodsX

December 2024

North China University of Water Resources and Electric Power, No. 136, Jinshui East Road, Jinshui District, Zhengzhou City 450046, Henan Province, PR China.

Electrical Resistivity Tomography (ERT) is an efficient geophysical exploration technique widely used in the exploration of groundwater resources, environmental monitoring, engineering geological assessment, and archaeology. However, the undulation of the terrain significantly affects the accuracy of ERT data, potentially leading to false anomalies in the resistivity images and increasing the complexity of interpreting subsurface structures. This paper reviews the progress in the research on terrain correction for resistivity methods since the early 20th century.

View Article and Find Full Text PDF

Chemical characteristics and evolution of groundwater in northeastern margin of the Tibetan Plateau, China.

Environ Geochem Health

December 2024

School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, Shaanxi, China.

With the excellent water quality, abundant water quantity and convenient and economical exploitation conditions, groundwater has become an important water source for the social and economic development and people's livelihood in the northeast margin of the Tibetan Plateau in China. This study employed geostatistics, mineral saturation index, Gibbs diagram, ion ratio coefficient, chloralkali index and other methods to reveal the chemical distribution characteristics, evolution law and hydrogeochemical formation mechanism of groundwater in the northeastern margin of the Tibetan Plateau. The results showed that the contents of main chemical components of groundwater in Beichuan increased continuously from 1980 to 2020 complicating the types of hydrochemistry due to intensive groundwater exploitation and potential pollution from chemical plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!