Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effects of different concentrations of synthetic sheep urine and plant species on ammonia-oxidizing bacterial (AOB) communities in an upland grassland soil were investigated using a microcosm approach. Plant species characteristic of unimproved and improved agricultural pastures (Agrostis capillaris and Lolium perenne, respectively) were planted in soil microcosms, and different levels of synthetic sheep urine were applied, with harvests 10 and 50 days following urine application. Shifts in the community structure of the AOB were investigated using terminal restriction fragment length polymorphism of amoA amplicons. Species richness and diversity were significantly altered by synthetic sheep urine addition and time depending on plant species type. Principal coordinate analysis revealed that AOB community structure was largely dependent on interactions between sheep urine deposition, plant species, and time after urine application, while significant changes in AOB structure were also revealed by similarity percentage analysis. The results of this study suggested that high levels of sheep urine, combined with floristic changes that are characteristic of agricultural intensification, can contribute to temporal and spatial changes in the structure of key bacterial communities in upland grassland soil. Changes in AOB community structure could potentially affect important soil processes, such as nitrification, with subsequent implications for nutrient cycling in agricultural systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/w08-065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!