The incidence of fungal infections has increased significantly over the past decades. Very often these infections are associated with biofilm formation on implanted biomaterials and/or host surfaces. This has important clinical implications, as fungal biofilms display properties that are dramatically different from planktonic (free-living) populations, including increased resistance to antifungal agents. Here we describe a rapid and highly reproducible 96-well microtiter-based method for the formation of fungal biofilms, which is easily adaptable for antifungal susceptibility testing. This model is based on the ability of metabolically active sessile cells to reduce a tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide) to water-soluble orange formazan compounds, the intensity of which can then be determined using a microtiter-plate reader. The entire procedure takes approximately 2 d to complete. This technique simplifies biofilm formation and quantification, making it more reliable and comparable among different laboratories, a necessary step toward the standardization of antifungal susceptibility testing of biofilms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741160PMC
http://dx.doi.org/10.1038/nport.2008.141DOI Listing

Publication Analysis

Top Keywords

fungal biofilms
12
antifungal susceptibility
12
susceptibility testing
12
reproducible 96-well
8
method formation
8
formation fungal
8
biofilm formation
8
simple reproducible
4
96-well plate-based
4
plate-based method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!