The enzyme ribonucleotide reductase, responsible for the synthesis of deoxyribonucleotides (dNTP), is upregulated in response to DNA damage in all organisms. In Saccharomyces cerevisiae, dNTP concentration increases approximately 6- to 8-fold in response to DNA damage. This concentration increase is associated with improved tolerance of DNA damage, suggesting that translesion DNA synthesis is more efficient at elevated dNTP concentration. Here we show that in a yeast strain with all specialized translesion DNA polymerases deleted, 4-nitroquinoline oxide (4-NQO) treatment increases mutation frequency approximately 3-fold, and that an increase in dNTP concentration significantly improves the tolerance of this strain to 4-NQO induced damage. In vitro, under single-hit conditions, the replicative DNA polymerase epsilon does not bypass 7,8-dihydro-8-oxoguanine lesion (8-oxoG, one of the lesions produced by 4-NQO) at S-phase dNTP concentration, but does bypass the same lesion with 19-27% efficiency at DNA-damage-state dNTP concentration. The nucleotide inserted opposite 8-oxoG is dATP. We propose that during DNA damage in S. cerevisiae increased dNTP concentration allows replicative DNA polymerases to bypass certain DNA lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553575 | PMC |
http://dx.doi.org/10.1093/nar/gkn555 | DOI Listing |
Biomolecules
November 2024
Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary.
Tuberculosis (TB) presents significant medical challenges, largely due to the genetic diversity of , which enhances the resilience and resistance of the pathogen to first-line treatments. In response to the global rise of drug-resistant TB, second-line antitubercular drugs like bedaquiline (BDQ), linezolid (LZD), and clofazimine (CFZ) have become critical treatment options. Understanding the molecular changes these drugs induce is essential for optimizing TB therapy.
View Article and Find Full Text PDFSci Rep
October 2024
Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
Loop-Mediated Isothermal Amplification (LAMP) represents a valuable technique for DNA/RNA detection, known for its exceptional sensitivity, specificity, speed, accuracy, and affordability. This study focused on optimizing a LAMP-based method to detect early signs of Plasmopara halstedii, the casual pathogen of sunflower downy mildew, a severe threat to sunflower crops. Specifically, a set of six LAMP primers (two outer, two inner, and two loop) were designed from P.
View Article and Find Full Text PDFbioRxiv
April 2024
Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706, USA.
Intracellular pools of deoxynucleoside triphosphates (dNTPs) are strictly maintained throughout the cell cycle to ensure accurate and efficient DNA replication. DNA synthesis requires an abundance of dNTPs, but elevated dNTP concentrations in nonreplicating cells delay entry into S phase. Enzymes known as deoxyguanosine triphosphate triphosphohydrolases (Dgts) hydrolyze dNTPs into deoxynucleosides and triphosphates, and we propose that Dgts restrict dNTP concentrations to promote the G1 to S phase transition.
View Article and Find Full Text PDFBiochemistry
April 2024
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats.
View Article and Find Full Text PDFSci Adv
April 2024
Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA.
Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found that RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers, enabling their direct integration into CRISPR arrays as 3'-dN-RNAs or 3'-dN-RNA/cDNA duplexes at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers is initiated at 3' proximal sites by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of near full-length cDNAs of diverse RNAs without fixed sequence requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!