MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages.

J Biol Chem

B Cell Molecular Immunology Section, Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: November 2008

The Toll-like receptors (TLR) play an instructive role in innate and adaptive immunity by recognizing specific molecular patterns from pathogens. Autophagy removes intracellular pathogens and participates in antigen presentation. Here, we demonstrate that not only TLR4, but also other TLR family members induce autophagy in macrophages, which is inhibited by MyD88, Trif, or Beclin 1 shRNA expression. MyD88 and Trif co-immunoprecipitate with Beclin 1, a key factor in autophagosome formation. TLR signaling enhances the interaction of MyD88 and Trif with Beclin 1, and reduces the binding of Beclin 1 to Bcl-2. These findings indicate TLR signaling via its adaptor proteins reduces the binding of Beclin 1 to Bcl-2 by recruiting Beclin 1 into the TLR-signaling complex leading to autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586260PMC
http://dx.doi.org/10.1074/jbc.M804478200DOI Listing

Publication Analysis

Top Keywords

myd88 trif
16
autophagy macrophages
8
trif beclin
8
tlr signaling
8
reduces binding
8
binding beclin
8
beclin bcl-2
8
beclin
7
myd88
4
trif target
4

Similar Publications

Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear.

View Article and Find Full Text PDF

Peroxiredoxin 1 (PRDX1), an intracellular antioxidant enzyme, has emerged as a regulator of inflammatory responses via Toll-like receptor 4 (TLR4) signaling. Despite this, the mechanistic details of the PRDX1-TLR4 axis and its impact on osteoclast differentiation remain elusive. Here, we show that PRDX1 suppresses RANKL-induced osteoclast differentiation.

View Article and Find Full Text PDF

Genome-wide screen based on 2DG activated NLRP3 inflammasome reveals the priming signal of TLR2/4 to IKKβ but not IKKα.

Int Immunopharmacol

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China. Electronic address:

NLRP3 inflammasome activation is a pivotal area of research in innate immunity, yet the precise priming and activation signal remain unclear. In this study, we demonstrate that glycolysis inhibitor 2-Deoxy-D-glucose (2DG) triggers NLRP3-driven pyroptosis in human leukemia monocyte THP-1 cells by interfering glycosylation rather than glycolysis, which occurs independent of potassium efflux but requires the involvement of glycolysis rate-limiting enzyme PFKP. Using a CRISPR-Cas9 mediated large-scale screen, with 2DG as a new tool for probing NLRP3 activation, we identified that TLR2, rather than TLR4, initiates a rapid and robust priming signal for NLRP3 inflammasome activation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how genetic variations in the TLR4 gene affect immune responses to pertussis toxin in different mouse strains (ICR, NIH, BALB/c).
  • Researchers discovered three specific mutations in the TLR4 gene and noted how these variations influence cytokine production in response to stimulation.
  • The findings aim to improve the consistency of vaccine evaluations across different mouse models, potentially enhancing vaccine development by standardizing immune response assessments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!