Monitoring of cultured cell activity by the quartz crystal and the micro CCD camera under chemical stressors.

Biosens Bioelectron

School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.

Published: January 2009

For investigating effects of chemical stressors to cultured cells, we have developed a quartz crystal microbalance (QCM) system with a micro CCD camera that enables microscopic observations simultaneously with the QCM measurements. Human hepatoma cell line (HepG2) cells were cultured on the collagen coated quartz crystal which has indium tin oxide (ITO) electrodes that enable transmission imaging of the cultured cells by the micro CCD camera during the QCM measurements. Glutaraldehyde (GA) and t-butylhydroperoxide (t-BHP) were used for the chemical stressors. The response of the QCM was monitored and analyzed with the resonance frequency and the resonance resistance (F-R) diagram. At the same time, the photographs of the cells were recorded to observe the morphological change. In the case of GA, the QCM responded in two steps which consisted of the rapid response of the cross-linking reactions and successive decreasing cytoskeletons in the cells. In the case of t-BHP, the response showed two steps. At first, the cells changed their shapes to round, and then the weakened cells were unsticked from the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2008.07.038DOI Listing

Publication Analysis

Top Keywords

quartz crystal
12
micro ccd
12
ccd camera
12
chemical stressors
12
cultured cells
8
qcm measurements
8
cells
7
qcm
5
monitoring cultured
4
cultured cell
4

Similar Publications

Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.

View Article and Find Full Text PDF

Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose-Anionic Surfactant Complexes on Negatively Charged Substrates.

Polymers (Basel)

January 2025

Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza de la Ciencias s/n, 28040 Madrid, Spain.

This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)-sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour and adsorption mechanisms of QHECE-SDS complexes are investigated using model substrates that mimic the wettability and surface charge of damaged hair fibres.

View Article and Find Full Text PDF

Flexible deformation and special interface structure in nanoparticle-stabilized Pickering bubbles strengthen the immunological response as adjuvant.

J Mater Chem B

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.

View Article and Find Full Text PDF

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

One-step antifouling coating of polystyrene using engineered polypeptides.

J Colloid Interface Sci

January 2025

Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4 6708 WE Wageningen, The Netherlands. Electronic address:

Unwanted nonspecific adsorption caused by biomolecules influences the lifetime of biomedical devices and the sensing performance of biosensors. Previously, we have designed B-M-E triblock proteins that rapidly assemble on inorganic surfaces (gold and silica) and render those surfaces antifouling. The B-M-E triblock proteins have a surface-binding domain B, a multimerization domain M and an antifouling domain E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!