The masker-probe paradigm is a commonly used technique to reduce stimulus artifact in electrically evoked compound action potential registers. This method takes advantage of the refractory properties of the cochlear nerve, combining the responses to different types of stimulation pulses in order to obtain the biological response free of artifact. In this paper we extend the masker-probe paradigm by combining the responses to these stimulation pulses with optimal weights. We also provide an automatic method to obtain an estimation of the optimal weights. A comparison with the conventional masker-probe paradigm shows that the proposed method improves the quality of electrically evoked compound action potential registers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2008.08.008 | DOI Listing |
J Physiol Sci
January 2025
Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan. Electronic address:
Experiments measuring evoked potentials require flexible and rapid adjustment of stimulation and recording parameters. In this study, we have developed a recording system and an associated Android application that allow making such adjustments wirelessly. The system consists of 3 units: for stimulation, recording and control.
View Article and Find Full Text PDFPLoS One
January 2025
Klab4Recovery Research Program, The City University of New York, Staten Island, New York, United States of America.
Recruitment input-output curves of transspinal evoked potentials that represent the net output of spinal neuronal networks during which cortical, spinal and peripheral inputs are integrated as well as motor evoked potentials and H-reflexes are used extensively in research as neurophysiological biomarkers to establish physiological or pathological motor behavior and post-treatment recovery. A comparison between different sigmoidal models to fit the transspinal evoked potentials recruitment curve and estimate the parameters of physiological importance has not been performed. This study sought to address this gap by fitting eight sigmoidal models (Boltzmann, Hill, Log-Logistic, Log-Normal, Weibull-1, Weibull-2, Gompertz, Extreme Value Function) to the transspinal evoked potentials recruitment curves of soleus and tibialis anterior recorded under four different cathodal stimulation settings.
View Article and Find Full Text PDFInt J Neurosci
January 2025
Department of Mathematics, Payame Noor University, Tehran, Iran.
The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.
View Article and Find Full Text PDFFront Neurosci
January 2025
The First Affiliated Hospital of Soochow University, Suzhou, China.
Background: Electrically evoked compound action potential (ECAP) can be used to measure the auditory nerve's response to electrical stimulation in cochlear implant (CI) users. In the Nurotron CI system, extracting the ECAP waveform from the stimulus artifact is time-consuming.
Method: We developed a new paradigm ("FastCAP") for use with Nurotron CI devices.
Heliyon
January 2025
Department of Optometry and Vision Science, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran.
Purpose: We aimed to build a machine learning-based model to predict radiation-induced optic neuropathy in patients who had treated head and neck cancers with radiotherapy.
Materials And Methods: To measure radiation-induced optic neuropathy, the visual evoked potential values were obtained in both case and control groups and compared. Radiomics features were extracted from the area segmented which included the right and left optic nerves and chiasm.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!