Brain capillary endothelial cells control the uptake and efflux from the brain of many hydrophilic compounds due to highly specialized transporters often localized in a polarized way. Localization of Na(+)- and Cl(-)-dependent amino acid and carnitine transporter B(0,+) (ATB(0,+)) was studied in a co-culture of bovine brain capillary endothelial cells (BBCEC) grown on filters above astrocytes (an in vitro blood-brain barrier model). Immunoblotting and three-dimensional immunocytochemistry analysis with anti-B(0,+)antibodies demonstrated the presence of this transporter and its prevalent co-localization with P-glycoprotein i.e. at the apical side. The sensitivity of leucine uptake through the apical membrane to 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH), D-serine as well as sodium and chloride replacement confirm the functioning of ATB(0,+) and suggests an important physiological role of ATB(0,+) in controlling the delivery of amino acids and carnitine to the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2008.08.122DOI Listing

Publication Analysis

Top Keywords

polarized localization
8
transporter b0+
8
b0+ atb0+
8
blood-brain barrier
8
brain capillary
8
capillary endothelial
8
endothelial cells
8
localization amino
4
amino acid/carnitine
4
acid/carnitine transporter
4

Similar Publications

Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In , the Wnt/β-catenin Asymmetry (WβA) pathway regulates many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.

View Article and Find Full Text PDF

Nonplanar (butterfly-shaped) phenothiazine () and its derivative's () photophysical and spectral properties have been tuned by varying the solvents and their polarity and investigated employing spectroscopic techniques such as UV-Vis, steady-state and time-resolved fluorescence, and TDDFT calculations. The UV-Vis absorption studies and TDDFT calculations reveal two distinct bands for both compounds: a strong π-π* transition at shorter wavelengths and a weaker -π* transition, which displays a little bathochromic shift in polar solvents. The detailed emission studies reveal that such dual emission is a result of the photoinduced excited-state conjugation enhancement (ESCE) process.

View Article and Find Full Text PDF

Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75 receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75 levels are transiently modulated, yet the molecular mechanisms underlying this process are not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!