Long-term culture of mesenchymal stem cells leads to a loss of differentiation capacity, the molecular mechanism of which remains not understood. We show here that expansion of adipose stem cells (ASCs) to late passage (replicative senescence) is associated with promoter-specific and global changes in epigenetic histone modifications. In undifferentiated ASCs, inactive adipogenic and myogenic promoters are enriched in a repressive combination of trimethylated H3K4 (H3K4m3) and H3K27m3 in the absence of H3K9m3, a heterochromatin mark. Sequential chromatin immunoprecipitation assays indicate that H3K4m3 and H3K27m3 co-occupy a fraction of nucleosomes on some but not all lineage-specific promoters examined. However in cultured primary keratinocytes, adipogenic and myogenic promoters are enriched in trimethylated H3K4, K27, and K9, illustrating two distinct epigenetic states of inactive promoters related to potential for activation. H3K4m3 and H3K27m3 stably mark promoters during long-term ASC culture indicating that loss of differentiation capacity is not due to alterations in these histone modifications on these loci. Adipogenic differentiation in early passage results in H3K27 demethylation and H3K9 acetylation specifically on adipogenic promoters. On induction of differentiation in late passage, however, transcriptional upregulation is impaired, H3K27 trimethylation is maintained and H3K9 acetylation is inhibited on promoters. In addition, the polycomb proteins Ezh2 and Bmi1 are targeted to promoters. This correlates with global cellular Ezh2 increase and H3K9 deacetylation. Promoter targeting by Ezh2 and Bmi1 in late passage ASCs suggests the establishment of a polycomb-mediated epigenetic program aiming at repressing transcription.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2008.0189 | DOI Listing |
Int J Mol Sci
January 2025
School of Life Science, Northwest University, Xi'an 710069, China.
Breast cancer (BC) subtypes exhibit distinct epigenetic landscapes, with triple-negative breast cancer (TNBC) lacking effective targeted therapies. This study investigates histone biomarkers and therapeutic vulnerabilities across BC subtypes. The immunohistochemical profiling of >20 histone biomarkers, including histone modifications, modifiers, and oncohistone mutations, was conducted on a discovery cohort and a validation cohort of BC tissues, healthy controls, and cell line models.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.
View Article and Find Full Text PDFBiomolecules
January 2025
College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China.
The tumor microenvironment (TME) plays a pivotal role in neoplastic initiation and progression. Epigenetic machinery, governing the expression of core oncogenes and tumor suppressor genes in transformed cells, significantly contributes to tumor development at both primary and distant sites. Recent studies have illuminated how epigenetic mechanisms integrate external cues and downstream signals, altering the phenotype of stromal cells and immune cells.
View Article and Find Full Text PDFBiomolecules
December 2024
Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania.
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy.
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!