Glass-liquid transition of vapor-deposited hexane studied using TOF-SIMS.

J Phys Chem B

Nanoscale Materials Center, National Institute for Materials Science 1-1 Namiki, Tsukuba, Ibaraki, Japan.

Published: October 2008

Thermodynamic connection between liquid and glass is not obvious for poor glass formers. In this study, microscopic molecular diffusivity and macroscopic fluidity of vapor-deposited thin films of n-hexane were investigated using TOF-SIMS to elucidate the mechanism of the glass-liquid transition. The C 6H 14 film deposited at 15 K is characterized by a porous structure, as inferred from the intermixing with adsorbed C 6D 14 and D 2O molecules, as well as the formation of D 2O nanoclusters on the surface. The hexane molecules are reoriented at temperatures higher than 60-70 K, resulting in smoothing of the surface and densification of the film. Self-diffusion of the hexane molecules commences at 110 K; then, the film dewets the Ni(111) substrate after some aging time. Results indicate that ultraviscous liquid formed at the glass transition temperature of 110 K transforms into fluidized liquid immediately before crystallization. The D 2O molecules adsorbed onto the surface play a role as a surfactant, as evidenced by quenching the film dewetting. The ultraviscous liquid is likely to be a distinct phase, which might explain the absence of calorimetric glass transition for poor glass formers like hexane.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp804781jDOI Listing

Publication Analysis

Top Keywords

glass-liquid transition
8
poor glass
8
glass formers
8
hexane molecules
8
ultraviscous liquid
8
glass transition
8
glass
5
transition vapor-deposited
4
hexane
4
vapor-deposited hexane
4

Similar Publications

Study Question: Does one-step warming (OW), a simplified embryo warming protocol, adversely affect survival and developmental potential in vitrified cleavage or blastocyst stage embryos compared to standard multi-step warming (SW)?

Summary Answer: OW showed no detrimental effects on survival and developmental potential compared to SW in cleavage and blastocyst stage embryos.

What Is Known Already: While standard embryo warming protocols involve a multi-step procedure using a stepwise osmotic solution to avoid a rapid influx of water into the embryo, recent studies suggest that eliminating the stepwise warming process does not reduce embryo survival and embryo transfer outcomes. However, previous reports have focused primarily on pregnancy rates, and a more detailed analysis of the effects of rapid osmotic pressure changes on embryos is necessary to standardize the protocol.

View Article and Find Full Text PDF

Fluctuating Spinodal-like Structure in the Glacial Phase of d-Mannitol.

J Phys Chem B

December 2024

CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

The glacial phase can be formed from supercooled liquid (SCL) in certain systems, which is called liquid-liquid transition (LLT). Revealing the nature of the glacial phase especially in a single-component system is crucial for understanding the LLT process. Here, by using flash differential scanning calorimetry and cold-field transmission electron microscopy, the structure of the d-mannitol glacial phase and the phase transition kinetics between the glacial phase and SCL were studied.

View Article and Find Full Text PDF

Background And Aims: High-throughput in vitro pharmacological toxicity testing is essential for drug discovery. Precision-cut liver slices (PCLS) provide a robust system for screening that is more representative of the complex 3D structure of the whole liver than isolated hepatocytes. However, PCLS are not available as off-the-shelf products, significantly limiting their translational potential.

View Article and Find Full Text PDF

Molecular insights into kinetic stabilization of amorphous solid dispersion of pharmaceuticals.

Phys Chem Chem Phys

December 2024

Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Praha, Czech Republic.

Poor aqueous solubility of crystalline active pharmaceutical ingredients (APIs) restricts their bioavailability. Amorphous solid dispersions with biocompatible polymer excipients offer a solution to overcome this problem, potentially enabling a broader use of many drug candidate molecules. This work addresses various aspects of the design of a suitable combination of an API and a polymer to form such a binary solid dispersion.

View Article and Find Full Text PDF

Background: Chronic salpingitis is one of the most common causes of female infertility. Luteal support is a critical step for embryo transfer. Here, we evaluated the effects of two luteal support regimens, intramuscular progesterone (IMP) and progesterone vaginal gel (VAG), on the pregnancy outcomes in patients with chronic salpingitis undergoing vitrified-warmed embryo transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!