This commentary unit discusses in great detail the theoretical nature of fluorescence recovery after photobleaching (FRAP). This information is crucial to an understanding of how and why FRAP works in a cell system. Further, understanding how to interpret the data sets requires a sound knowledge of the processes involved. Of primary importance are the nature of membrane diffusion and the nature of the multiple compartments into which fluorescent dyes can enter. The unit provides a complete discussion of all aspects of FRAP from the perspective of cellular measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/0471142956.cy0212s16 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Physics, Northeast Forestry University, Harbin 150040, China.
In this study, an approach has been proposed in response to the urgent need for a sensitive and stable method for glucose detection at low concentrations. Platinum octaethylporphyrin (PtOEP) was chosen as the probe and embedded into the matrix material to yield a glucose-sensing film, i.e.
View Article and Find Full Text PDFJ Anesth
January 2025
Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
Nat Commun
January 2025
State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame.
View Article and Find Full Text PDFQRB Discov
December 2024
Department of Chemistry, University of Basel, Basel, Switzerland.
Single Molecule Förster Resonance Energy Transfer (smFRET) is a popular technique to directly observe biomolecular dynamics in real time, offering unique mechanistic insight into proteins, ribozymes, and so forth. However, inevitable photobleaching of the fluorophores puts a stringent limit on the total time a surface-tethered molecule can be monitored, fundamentally limiting the information gain through conventional smFRET measurements. DyeCycling addresses this problem by using reversibly - instead of covalently - coupled FRET fluorophores, through which it can break the photobleaching limit and theoretically provide unlimited observation time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!