Spinal muscular atrophy (SMA), a motor neuron disease (MND) and one of the most common genetic causes of infant mortality, currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study, we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function, increased life span, and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern, including changes in RNA metabolism proteins, cell cycle proteins, and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype, indicating that transplantation of NSCs may be a possible treatment for SMA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2525699PMC
http://dx.doi.org/10.1172/JCI35432DOI Listing

Publication Analysis

Top Keywords

motor neurons
12
neural stem
8
stem cell
8
cell transplantation
8
spinal muscular
8
muscular atrophy
8
sma
8
sma mice
8
neurons treated
8
nsc transplantation
8

Similar Publications

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy.

View Article and Find Full Text PDF

Neuroplasticity in the motor cortex following the achievement of sufficient motor learning.

Neurosci Lett

January 2025

Laboratory of Neurorehabilitation, Department of Occupational Therapy, Biwako Professional University of Rehabilitation, 967 Kitasaka, Higashiomi, Shiga 527-0145, Japan.

Skilled motor training causes the cortical representation of the trained body parts to expand into regions of the motor cortex related to other body parts. However, the effect of neuroplastic changes on the neurons originally existing within the expanded area is not well understood. In this study, the extent of the neuroplastic changes after achieving sufficient motor learning and the impact of the expansion on the neurons related to movements of other body parts were investigated.

View Article and Find Full Text PDF

Approaching threats are perceived through visual looming, a rapid expansion of an image on the retina. Visual looming triggers defensive responses such as freezing, flight, turning, or take-off in a wide variety of organisms, from mice to fish to insects. In response to looming, flies perform rapid evasive turns known as saccades.

View Article and Find Full Text PDF

The current understanding of primate natural action organization derives from laboratory experiments in restrained contexts (RCs) under the assumption that this knowledge generalizes to freely moving contexts (FMCs). In this work, we developed a neurobehavioral platform to enable wireless recording of the same premotor neurons in both RCs and FMCs. Neurons often encoded the same hand and mouth actions differently in RCs and FMCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!