Evidence for the functional significance of diazotroph community structure in soil.

ISME J

Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853, USA.

Published: January 2009

Microbial ecologists continue to seek a greater understanding of the factors that govern the ecological significance of microbial community structure. Changes in community structure have been shown to have functional significance for processes that are mediated by a narrow spectrum of organisms, such as nitrification and denitrification, but in some cases, functional redundancy in the community seems to buffer microbial ecosystem processes. The functional significance of microbial community structure is frequently obscured by environmental variation and is hard to detect in short-term experiments. We examine the functional significance of free-living diazotrophs in a replicated long-term tillage experiment in which extraneous variation is minimized and N-fixation rates can be related to soil characteristics and diazotroph community structure. Soil characteristics were found to be primarily impacted by tillage management, whereas N-fixation rates and diazotroph community structure were impacted by both biomass management practices and interactions between tillage and biomass management. The data suggest that the variation in diazotroph community structure has a greater impact on N-fixation rates than do soil characteristics at the site. N-fixation rates displayed a saturating response to increases in diazotroph community diversity. These results show that the changes in the community structure of free-living diazotrophs in soils can have ecological significance and suggest that this response is related to a change in community diversity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ismej.2008.82DOI Listing

Publication Analysis

Top Keywords

community structure
32
diazotroph community
20
functional significance
16
n-fixation rates
16
soil characteristics
12
community
11
structure
8
structure soil
8
ecological significance
8
significance microbial
8

Similar Publications

Structural stigma towards gender minority (GM; people whose current gender does not align with sex assigned at birth) people is an important contributor to minority stress (i.e., stress experienced due to one's marginalized GM identity), although existing variables are unclear in their inclusion of social norms, or societal stigma, as a key component of the construct.

View Article and Find Full Text PDF

Metagenomic deciphers the mobility and bacterial hosts of antibiotic resistance genes under antibiotics and heavy metals co-selection pressures in constructed wetlands.

Environ Res

January 2025

Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China. Electronic address:

Both antibiotics and heavy metals exert significant selection pressures on antibiotic-resistance genes (ARGs). This study aimed to investigate the co-selection effects of doxycycline (DC) and cadmium (Cd) on ARGs in constructed wetlands (CWs). The results demonstrated that under antibiotic and heavy metal co-selection pressures, single high concentration DC/Cd or double high, relative abundances of metagenomics assembled genomes all reached 55.

View Article and Find Full Text PDF

Salinization processes profoundly impact soil quality and health, altering physical structure, chemical composition, and biological activity, particularly concerning soil microbial populations. Microbial communities play a pivotal role in maintaining soil ecosystem multifunctionality (EMF). Understanding the response of microbial communities to salinity stress is crucial for sustainable soil management and enhancing ecosystem resilience in arid and semi-arid regions.

View Article and Find Full Text PDF

The regulatory mechanism controlling nitrification inhibitors-induced mitigation of nitrification and NO-N leaching in alkaline purple soil.

J Environ Manage

January 2025

College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing, 400716, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400716, China.

Nitrification inhibitors (NIs) are critical to reduce nitrogen (N) leaching losses. However, the efficacy of different NIs can be highly variable across soils and crop types, and a deeper understanding of the mechanistic basis of this efficiency variation, especially in purple soil under vegetable production, is lacking. To enrich this knowledge gap, the impact of different NIs amendment (3,4-dimethylpyrazole phosphate, DMPP; dicyandiamide, DCD; nitrapyrin, NP) on nitrification and the microbial mechanistic basis of controlling nitrate (NO-N) leaching of vegetable purple soil was explored in southwest China.

View Article and Find Full Text PDF

The archipelago of Puerto Rico has faced multiple natural disasters, including hurricanes and earthquakes, disrupting the mental health and daily lives of its residents. These disasters, combined with socio-political abandonment, have led to the deterioration of the electrical grid, exacerbating health disparities. This study aimed to explore the linkages between natural and structural disasters, mental health, and energy independence in Puerto Rico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!