Oligodendrocyte differentiation and implantation: new insights for remyelinating cell therapy.

Curr Opin Neurol

Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.

Published: October 2008

Purpose Of Review: Recent research on oligodendrocyte development has yielded new insights on the involvement of morphogens and differentiation factors in oligodendrogenesis. This knowledge has improved strategies to control neural stem cell-derived oligodendrocyte differentiation and functional maturation in vitro. In this review, we highlight the current knowledge on oligodendrocyte differentiation and discuss the novel possibilities of neural stem cell-derived oligodendrocytes for graft-based remyelination therapy, for example, for multiple sclerosis.

Recent Findings: Detailed insight into the cellular and molecular processes of embryonic and adult oligodendrogenesis has extended considerably in the past 2 years. Application of extrinsic factors and manipulation of intrinsic factors in neural stem cells have yielded convincing oligodendrocyte differentiation strategies. In addition, the recent groundbreaking developments regarding induced pluripotent stem cells generated from easily accessible somatic cells seem to offer an almost inexhaustible source for transplantable, autologous neural stem cells. Moreover, new approaches to optimize the implantation site for oligodendrocyte survival and functionality have improved the feasibility of stem cell-based oligodendrocyte replacement therapy.

Summary: Loss of myelin in demyelinating diseases is only partly restored by endogenous oligodendrocyte precursor cells. Application of optimally functional, neural stem cell-derived oligodendrocyte precursors at the lesion site has become a realistic therapeutic approach to promote the remyelination process.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WCO.0b013e32830f1e50DOI Listing

Publication Analysis

Top Keywords

neural stem
20
oligodendrocyte differentiation
16
stem cell-derived
12
stem cells
12
oligodendrocyte
9
cell-derived oligodendrocyte
8
stem
7
neural
5
cells
5
differentiation implantation
4

Similar Publications

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Revisiting the unobtrusive role of exogenous stem cells beyond neural circuits replacement in spinal cord injury repair.

Theranostics

January 2025

Department of biochemistry and molecular biology, College of Life Sciences, Central South University, Changsha, 410078, Hunan, China.

Stem cell transplantation is a promising strategy to establish neural relays in situ for spinal cord injury (SCI) repair. Recent research has reported short-term survival of exogenous cells, irrespective of immunosuppressive drugs (ISD), results in similar function recovery, though the mechanisms remain unclear. This study aims to validate this short-term repair effect and the potential mechanisms in large animals.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most frequent form of dementia and represents an increasing global burden, particularly in countries like Indonesia, where the population has begun to age significantly. Current medications, including cholinesterase inhibitors and NMDA receptor antagonists, have modest effects on clinical symptoms in the early to middle stages, but there is no curative treatment available so far despite progress. Activating or repressing epigenetic modifications, including DNA methylation, histone modification and microRNA regulation, appears to play an important role in AD development.

View Article and Find Full Text PDF

Senescence, a crucial yet paradoxical phenomenon in cellular biology, acts as a barrier against cancer progression while simultaneously promoting aging and age-related pathologies. This duality underlines the importance of precise monitoring of senescence response, especially with regard to the proposed use of drugs selectively removing senescent cells. In particular, little is known about the role of senescence in neurons and in neurodegenerative diseases.

View Article and Find Full Text PDF

The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!