We previously found that the pro-apoptotic DNA damaging agent, cisplatin, mediated the proteasome-dependent degradation of Delta Np63 alpha associated with its increased phosphorylated status. Since Delta Np63 alpha usually plays an opposite role to p53 and TAp63 in human cancers, we tested the notion that phosphorylation events induced by DNA damage would affect the protein degradation of Delta Np63 alpha in HNSCC cells upon cisplatin exposure. We found that Delta Np63 alpha is phosphorylated in the time-dependent fashion at the following positions: S385, T397 and S466, which were surrounded by recognition motifs for ATM, CDK2 and p70s6K kinases, respectively. We showed that chemical agents or siRNA inhibiting the activity of ATM, CDK2 and p70s6K kinases blocked degradation of Delta Np63 alpha in HNSCC cells after cisplatin exposure. Site-specific mutagenesis of Delta Np63 alpha residues targeted for phosphorylation by ATM, CDK2 or p70s6k led to dramatic modulation of Delta Np63 alpha degradation. Finally, we demonstrated that the Delta Np63 alpha protein is a target for direct in vitro phosphorylation by ATM, CDK2 or p70s6K. Our results implicate specific kinases, and target phosphorylation sites in the degradation of Delta Np63 alpha following DNA damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069617 | PMC |
http://dx.doi.org/10.4161/cc.7.18.6627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!