The tumor suppressor protein p53 is considered the "Guardian of the Genome", crucial for cell cycle control and mutated in over 50% of human cancers. Following cellular stress, post-translational modifications such as phosphorylation and acetylation stabilise and activate p53 for cell cycle arrest, DNA repair, apoptosis or senescence. p53 protein functions as a tetramer and we have shown that loss of tetramerisation and changes at the N-terminus influence the recovery of wild type p53 'status'. To investigate the relationship between tetramerisation and post-translational modifications we examined a range of site-specific modifications in wild type and dimeric mutant (M340Q/L344R) murine p53 expressed in MEFs p53(-/-) and in wild type, monomeric (L344P) and dimeric (M340Q/L344R) human p53 expressed in HCT116 p53(-/-) cells. Using site-specific antibodies we demonstrate that in murine p53, S15 is phosphorylated in a tetramerisation-dependent manner. In contrast, human p53 S15 phosphorylation is not tetramerisation-dependent. Inability to form tetramers in human p53 proteins reduced site-specific N-terminal phosphorylation at S6, S9 and S46 and reduced C-terminal phosphorylation and acetylation at S315 and K382 respectively. In addition, p53 tetramerisation is required for efficient p21 and hdm2 transcription and protein expression and recruitment of p53 to specific promoter regions of p21 and hdm2.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.7.9.6473DOI Listing

Publication Analysis

Top Keywords

p53
13
post-translational modifications
12
murine p53
12
wild type
12
human p53
12
tumor suppressor
8
suppressor protein
8
cell cycle
8
phosphorylation acetylation
8
p53 expressed
8

Similar Publications

This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.

View Article and Find Full Text PDF

IP6K1 rewires LKB1 signaling to mediate hyperglycemic endothelial senescence.

Diabetes

January 2025

Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.

View Article and Find Full Text PDF

Objective: Based on our previous research, which demonstrated that elevated plasma endoglin (ENG) levels in lung cancer patients were associated with a better prognosis, increased sensitivity to pemetrexed, and enhanced tumor suppression, this study aims to validate these findings at the cellular level. The focus is on membrane and extracellular ENG and their influence on drug response and tumor cell behavior in non-small cell lung cancer (NSCLC) cells.

Methods: The correlation between ENG expression and pemetrexed-induced cytotoxicity in eight human non-squamous subtype NSCLC cell lines was analyzed.

View Article and Find Full Text PDF

Purpose: Developmentally regulated GTP-binding protein 2 (DRG2) regulates microtubule dynamics and G2/M arrest during docetaxel treatment. Poly ADP-ribose polymerase (PARP) acts as an important repair system for DNA damage caused by docetaxel treatment. This study investigated whether DRG2 expression affects response to PARP inhibitors (olaparib) using prostate cancer cell lines PC3, DU145, LNCaP-FGC, and LNCaP-LN3.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a significant cause of cancer-related mortality among women. This study explores the efficacy of L. () extract, known for its phytoestrogenic properties, in treating OC through hormonal and metabolic modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!