Vertical and horizontal spatial variability in the biodegradation of the herbicide bentazone was compared in sandy-loam soil from an agricultural field using sieved soil and intact soil cores. An initial experiment compared degradation at five depths between 0 and 80 cm using sieved soil. Degradation was shown to follow the first-order kinetics, and time to 50% degradation (DT(50)), declined progressively with soil depth from 56 d at 0-10 cm to 520 d at 70-80 cm. DT(50) was significantly correlated with organic matter, pH and dehydrogenase activity. In a subsequent experiment, degradation rate was compared after 127 d in sieved soil and intact cores from 0 to 10 and 50 to 60 cm depth from 10 locations across a 160x90 m portion of the field. Method of incubation significantly affected mean dissipation rate, although there were relatively small differences in the amount of pesticide remaining in intact cores and sieved soil, accounting for between 4.6% and 10.6% of that added. Spatial variability in degradation rate was higher in soil from 0 to 10 cm depth relative to that from 50 and 60 cm depth in both sieved soil and intact core assessments. Patterns of spatial variability measured using cores and sieved soil were similar at 50-60 cm, but not at 0-10 cm depth. This could reflect loss of environmental context following processing of sieved soil. In particular, moisture content, which was controlled in sieved soil, was found to be variable in cores, and was significantly correlated with degradation rate in intact topsoil cores from 0 to 10 cm depth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.07.044DOI Listing

Publication Analysis

Top Keywords

sieved soil
32
soil
13
soil depth
12
spatial variability
12
soil intact
12
degradation rate
12
herbicide bentazone
8
sieved
8
intact cores
8
cores depth
8

Similar Publications

Root-lesion nematodes (Pratylenchus spp.) are significant plant parasites, causing substantial crop damage worldwide. This study aimed to characterize Pratylenchus spp.

View Article and Find Full Text PDF

It is a great challenge to depict the evolution process of soil-nanomaterials micro-interfaces during soil remediation. A novel biochar loaded nano zero-valent iron (BC-nZVI) reactor with low density, high reactivity and suitable magnetism was prepared using the method we established. Fe nanoparticles (NPs) with the size <10 nm uniformly embedded in a layer of porous carbon networks, which attached firmly in the pores and outer surface of biochars.

View Article and Find Full Text PDF

Botanical gardens, areas for vegetation conservation, have become important reservoirs of beneficial soil microbiota, mainly as a source of microbial inoculum for agricultural purposes. Shrubby mycorrhizal fungi (AMF), an important genetic resource of tropical soils, have a high potential for agricultural production, generally used as inoculant medium that provides better yield, productivity and physiological response to crops. This research study explores the presence of AMF in a botanical garden, composed of four areas: cactarium collection, epiphytes and ornamental collection, tropical forest area and coastal zone.

View Article and Find Full Text PDF
Article Synopsis
  • Biochar, specifically bamboo biochar, is produced from bamboo straw through pyrolysis, which involves heating organic material without oxygen, and it's being studied for its potential benefits in tea garden soils.
  • The study found that adding bamboo biochar improved important soil properties, significantly increasing nutrients like nitrogen and phosphorus while enhancing microbial diversity and enzyme activity, but reducing soil acid phosphatase activity.
  • Results suggest that bamboo biochar can positively impact soil health, paving the way for further research in ecological restoration of tea garden soils.
View Article and Find Full Text PDF

Following the implementation of food safety limits on cadmium (Cd) in cacao products, there has been a growing demand for monitoring Cd in cacao tissues and soils. Traditional methods like acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are time-consuming and costly. X-ray Fluorescence is an alternative technique that offers advantages in terms of speed, cost, ease of use and less environmental impact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!