Functional consequences of constraining beta-Gal in bidimensional space were studied at defined molecular packing densities and constant topology. Langmuir-Blodgett films, LB15 and LB35 composed of dipalmitoyl phosphatidylcholine and K. lactis beta-Gal, were obtained by transferring Langmuir films (L) initially packed at 15 and 35 mN/m, respectively, to alkylated glasses. The beta-Gal-monolayer binding equilibrium, mainly the adsorption rate and affinity, depended on the initial monolayer's surface pressure (lower for higher pi i). At pi i = 15 and 35 mN/m, the surface excess (Gamma) followed downward parabolic and power-law tendencies, respectively, as a function of subphase protein concentration. Gamma values in L roughly reflected the protein surface density chemically determined in LBs (0-7.5 ng/mm2 at pi i = 0-35 mN/m and [beta-Gal] subphase = 0-100 microg/mL). The beta-Gal-catalyzed hydrolysis of o-nitrophenyl-galactopyranoside showed a Michaelian kinetics in solution as well as in LB15. KM, KM,LB15, Vmax, and Vmax,LB15 were 5.15 +/- 2.2 and 9.25 +/- 6 mM and 39.63 and 0.0096 +/- 0.0027 micromol/min/mg protein, respectively. The sigmoidal kinetics observed with LB35 was evaluated by Hill's model (K0.5 = 9.55 +/- 0.4 mM, Vmax,35 = 0.0021 micromol/min/mg protein, Hill coefficient n = 9) and Savageau's fractal model (fractal constant K f = 9.84 mM; reaction order for the substrate gs = 9.06 and for the enzyme ge = 0.62). Fractal reaction orders would reflect the fractal organization of the environment, demonstrated by AFM images, more than the molecularity of the reaction. Particular dynamics of the protein-lipid structural coupling in each molecular packing condition would have led to the different kinetic responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la801679m | DOI Listing |
Nano Lett
January 2025
School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state and soft-matter physics. Confined on a spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report here the emergence of new types of disclination patterns: domain and counter-domain defects, when hexagonal and square patterns coexist.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, University of Tabriz, Tabriz, Iran.
Nat Commun
January 2025
Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
Studying the self-assembly of chiral molecules in two dimensions offers insights into the fundamentals of crystallization. Using scanning tunneling microscopy, we examine an uncommon aggregation of polyaromatic chiral molecules on a silver surface. Dense packing is achieved through a chiral triangular tiling of triads, with N and N ± 1 molecules at the edges.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanchang University, School of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), CHINA.
Introduction of a guest component into the active layer is a simple yet effective approach to enhance the performance of organic solar cells (OSCs). Despite various guest components successfully employed in the OSCs, efficient guest components require deliberate design and ingenious inspiration, which still remains a big challenge for developing high performance OSCs. In this work, we propose a concept of "structural gene" engineering to create a new "double-gene" small molecule (L-DBDD) by simply combining the structures of both donor PM6 and acceptor L8-BO.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, Minhang, Shanghai, shanghai, CHINA.
The photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20%, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all-polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch-to-batch variation leads to quality control issues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!