Statistical measures for evaluating the similarity of different source apportionment solutions are proposed. The sensitivity of positive matrix factorization to small perturbations in species measurement uncertainty estimates is examined using fine particulate matter measurements on organic carbon, elemental carbon, ions, and metals at the St. Louis-Midwest Supersite. A perturbed uncertainty matrix is created by multiplying each original uncertainty value by a random multiplier generated from a log-normal distribution with a mean of 1 and a standard deviation (and CV) equal to either 0.25, 0.50, or 0.75. The relative errors in reproducing the average contribution estimates from the perturbed data are generally highest for the gasoline exhaust, with the relative error (expressed as a percentage of the "true" value) exceeding 30% for all three perturbation scenarios. The most stable estimates of average source contribution were associated with secondary sulfate and secondary nitrate, with relative errors always less than 4%. Averaged over all 10 sources, the average values for our measure of relative error for the three scenarios are 8%, 14%, and 17%, respectively. Relative errors associated with day-to-day estimates of source contributions can be more than double the size of the relative errors associated with estimates of average source contributions, with errors for four of 10 source contributions exceeding 30% for the largest-perturbation scenario. The stability of source profile estimates in our simulation varies greatly between sources, with a mean correlation between perturbed gasoline exhaust profiles and the true profile equal to only 59% for the largest-perturbation scenario. The process used for evaluation is a tool that may be used to assess the stability of solutions in source apportionment studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es800085tDOI Listing

Publication Analysis

Top Keywords

relative errors
16
source contributions
12
positive matrix
8
matrix factorization
8
particulate matter
8
source apportionment
8
gasoline exhaust
8
relative error
8
exceeding 30%
8
estimates average
8

Similar Publications

Purpose: To assess longitudinal changes in optical quality across the periphery (horizontal meridian, 60°) in young children who are at high (HR) or low risk (LR) of developing myopia, as well as a small subgroup of children who developed myopia over a 3-year time frame.

Methods: Aberrations were measured every 6 months in 92 children with functional emmetropia at baseline. Children were classified into HR or LR based on baseline refractive error and parental myopia.

View Article and Find Full Text PDF

Background: The use of iodinated contrast-enhancing agents in computed tomography (CT) improves the visualization of relevant structures for radiotherapy treatment planning (RTP). However, it can lead to dose calculation errors by incorrectly converting a CT number to electron density.

Purpose: This study aimed to propose an algorithm for deriving virtual non-contrast (VNC) electron density from dual-energy CT (DECT) data.

View Article and Find Full Text PDF

To adjust, or not to adjust, for multiple comparisons.

J Clin Epidemiol

January 2025

Wolfson Institute of Population Health, Queen Mary University of London, London, UK. Electronic address:

Questions often arise concerning when, whether and how we should adjust our interpretation of the results from multiple hypothesis tests. Strong arguments have been put forward in the epidemiological literature against any correction or adjustment for multiplicity, but regulatory requirements (particularly for pharmaceutical trials) can sometimes trump other concerns. The formal basis for adjustment is often the control of error rates, and hence the problems of multiplicity may seem rooted in a purely frequentist paradigm, though this can be a restrictive viewpoint.

View Article and Find Full Text PDF

Objective: This study constructed a new conditional generative adversarial network (CGAN) model to predict changes in lateral appearance following orthodontic treatment.

Methods: Lateral cephalometric radiographs of adult patients were obtained before (T1) and after (T2) orthodontic treatment. The expanded dataset was divided into training, validation, and test sets by random sampling in a ratio of 8:1:1.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!