Temporal changes in C and N stocks of restored prairie: implications for C sequestration strategies.

Ecol Appl

Argonne National Laboratory, Biosciences Division, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA.

Published: September 2008

The recovery of ecosystem C and N dynamics after disturbance can be a slow process. Chronosequence approaches offer unique opportunities to use space-for-time substitution to quantify the recovery of ecosystem C and N stocks and estimate the potential of restoration practices for C sequestration. We studied the distribution of C and N stocks in two chronosequences that included long-term cultivated lands, 3- to 26-year-old prairie restorations, and remnant prairie on two related soil series. Results from the two chronosequences did not vary significantly and were combined. Based on modeling predictions, the recovery rates of different ecosystem components varied greatly. Overall, C stocks recovered faster than N stocks, but both C and N stocks recovered more rapidly for aboveground vegetation than for any other ecosystem component. Aboveground C and N reached 95% of remnant levels in only 13 years and 21 years, respectively, after planting to native vegetation. Belowground plant C and N recovered several decades later, while microbial biomass C, soil organic C (SOC), and total soil N recovered on a century timescale. In the cultivated fields, SOC concentrations were depleted within the surface 25 cm, coinciding with the depth of plowing, but cultivation apparently led to redistribution of soil C, increasing SOC stocks deeper in the soil profile. The restoration of prairie vegetation was effective at rebuilding soil organic matter (SOM) in the surface soil. Accrual rates were maintained at 43 g C x m(-2) x yr(-1) and 3 g N x m(-2) x yr(-1) in the surface 0.16 Mg/m2 soil mass during the first 26 years of restoration and were predicted to reach 50% of their storage potential (3500 g C/m2) in the first 100 years. We conclude that restoration of tallgrass prairie vegetation can restore SOM lost through cultivation and has the potential to sequester relatively large amounts of SOC over a sustained period of time. Whether restored prairies can retain the C apparently transferred to the subsoil by cultivation practices remains to be seen.

Download full-text PDF

Source
http://dx.doi.org/10.1890/07-1609.1DOI Listing

Publication Analysis

Top Keywords

recovery ecosystem
8
soil
8
stocks recovered
8
soil organic
8
prairie vegetation
8
m-2 yr-1
8
stocks
7
prairie
5
temporal changes
4
changes stocks
4

Similar Publications

Forest gains and losses may have unequal effects on forest resilience, particularly given their distinct temporal dynamics. Here, we quantify the sensitivities of boreal forest resilience to forest cover gain and loss using a resilience indicator derived from the temporal autocorrelation (TAC) of the kernel normalized difference vegetation index from 2000 to 2020. Our findings unveil pronounced asymmetric sensitivities, with stronger sensitivity to forest loss (-4.

View Article and Find Full Text PDF

Notable ecological risks of microplastics to Minjiang River ecosystem over headwater to upstream in Eastern Qinghai-Tibetan Plateau.

Water Res

January 2025

CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:

Microplastics (MPs) in aquatic environments has been observed globally. However, the ecological risks of MP pollution in riverhead prior to highly urbanized region remain poorly understood. This study investigated MP pollution related to microbiome in sediments, and ecological risks of MPs in riverhead prior to urbanized area over 291 km of Minjiang River (MJR) in Qinghai-Tibetan Plateau (QTP).

View Article and Find Full Text PDF

Coral persistence in the Anthropocene depends on interactions among holobiont partners (coral animals and microbial symbionts) and their environment. Cryptic coral lineages-genetically distinct yet morphologically similar groups-are critically important as they often exhibit functional diversity relevant to thermal tolerance. In addition, environmental parameters such as thermal variability may promote tolerance, but how variability interacts with holobiont partners to shape responses to thermal challenge remains unclear.

View Article and Find Full Text PDF

Background: Large-scale coral bleaching events have become increasingly frequent in recent years. This process occurs when corals are exposed to high temperatures and intense light stress, leading to an overproduction of reactive oxygen species (ROS) by their endosymbiotic dinoflagellates. The ROS buildup prompts corals to expel these symbiotic microalgae, resulting in the corals' discoloration.

View Article and Find Full Text PDF

The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!