Purpose: The purpose of this in vitro study was to evaluate the color stability of restorative materials when exposed to a cola beverage.
Methods: Color changes in restorative materials caused by exposure to a cola beverage were studied using a split-plot experimental design. Three restorative materials (composite, resin-modified glass ionomer cement, and compomer) and 3 shades of each material under 2 surface conditions (polished and unpolished) were studied. Using a chromameter, color changes were determined as the difference between color dimensions before and after cola exposure. Scanning electron microscopy was used to characterize the surface morphology of all materials before and after polishing.
Results: 72-hour cola exposure resulted in significant changes in color, including gray level and chromaticity, both as a function of materials and their shades. Clinically, these changes compromised both color stability and esthetics in the resin-modified glass ionomer cement in all shades and in composites and compomers in the darkest shade.
Conclusions: To avoid color degradation through cola, the lighter shades of composites and compomers should be favored over darker C shades to restore anterior and more visible lesions. Resin-modified glass ionomer cement is not recommended in esthetically critical areas due to its tendency to discolor due to cola exposure.
Download full-text PDF |
Source |
---|
Phys Chem Chem Phys
January 2025
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials.
View Article and Find Full Text PDFJADA Found Sci
October 2024
Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR.
The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as . One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate.
View Article and Find Full Text PDFJ Int Soc Prev Community Dent
December 2024
Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
Aims: This study aimed to evaluate the enamel remineralization effect of fluoride-incorporated bioactive glass (F-BG) toothpaste on artificial subsurface caries in primary teeth.
Materials And Methods: Forty sound primary maxillary incisors were subjected to a demineralizing solution for four days to induce artificial enamel caries. The teeth were randomly divided into four experimental groups ( = 10 per group): Group I, F-BG toothpaste (530 ppm fluoride) (BiominF); Group II, 0.
J Int Soc Prev Community Dent
December 2024
Department of Environmental Science, School of Life Sciences, Mysuru, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.
Background: Importance of fluoride in dental restorative materials for preventing secondary caries. Several commercially available tooth-colored dental restorative materials, such as glass ionomer cement, resin composites, and compomers were used for this study.
Aim: To evaluate the amount of fluoride release from tooth-colored restorative materials [Conventional Glass Ionomer Cement (GC Fuji II)], Resin-modified Glass Ionomer Cement (ACTIVA BioACTIVE-RESTORATIVE), and Giomer (BEAUTIFIL II LS)] using ion-selective electrode (ISE) and spectrophotometer using zirconyl alizarin red dye method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!