MR-determined hippocampal asymmetry in full-term and preterm neonates.

Hippocampus

Neuroimaging and Neuroinformatics, Howard Florey Institute, University of Melbourne, Victoria, Australia.

Published: February 2009

Hippocampi are asymmetrical in children and adults, where the right hippocampus is larger. To date, no literature has confirmed that hippocampal asymmetry is evident at birth. Furthermore, gender differences have been observed in normal hippocampal asymmetry, but this has not been examined in neonates. Stress, injury, and lower IQ have been associated with alterations to hippocampal asymmetry. These same factors often accompany preterm birth. Therefore, prematurity is possibly associated with altered hippocampal asymmetry. There were three aims of this study: First, we assessed whether hippocampi were asymmetrical at birth, second whether there was a gender effect on hippocampal asymmetry, and third whether the stress of preterm birth altered hippocampal asymmetry. This study utilized volumetric magnetic resonance imaging to compare left and right hippocampal volumes in 32 full-term and 184 preterm infants at term. Full-term infants demonstrated rightward hippocampal asymmetry, as did preterm infants. In the case of preterm infants, hippocampal asymmetry was proportional to total hemispheric asymmetry. This study is the first to demonstrate that the normal pattern of hippocampal asymmetry is present this early in development. We did not find gender differences in hippocampal asymmetry at term. Preterm infants tended to have less asymmetrical hippocampi than full-term infants, a difference which became significant after correcting for hemispheric brain tissue volumes. This study may suggest that hippocampal asymmetry develops in utero and is maintained into adulthood in infants with a normal neurological course.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631622PMC
http://dx.doi.org/10.1002/hipo.20492DOI Listing

Publication Analysis

Top Keywords

hippocampal asymmetry
48
preterm infants
16
asymmetry
13
hippocampal
12
hippocampi asymmetrical
8
gender differences
8
preterm birth
8
altered hippocampal
8
asymmetry study
8
full-term infants
8

Similar Publications

Background And Purpose: The magnetic resonance images (MRIs) ability of lesion detection in epilepsy is crucial for a diagnosis and surgical outcome. Using automated artificial intelligence (AI)-based tools for measuring cortical thickness and brain volume originally developed for dementia, we aimed to identify whether it could lateralize epilepsy with normal MRIs.

Methods: Non-lesional 3-Tesla MRIs of 428 patients diagnosed with focal epilepsy, based on semiology and electroencephalography findings, were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Hippocampal sclerosis (HS) is a major cause of temporal lobe epilepsy (TLE) but can be hard to detect on MRI, leading to surgical delays, so researchers created open-source software to improve diagnosis.
  • The study involved 365 participants, using the software HippUnfold to analyze MRI scans and develop a logistic regression model that accurately identifies and localizes HS.
  • The classifier showed high accuracy in detecting HS in both initial and independent patient cohorts, proving effective for individual assessments by comparing patient data with normative growth patterns.
View Article and Find Full Text PDF

Mitochondrial dysfunction induced by mitochondrial DNA (mtDNA) mutations has been implicated in various human diseases. A comprehensive analysis of mitochondrial genetic disorders requires suitable animal models for human disease studies. While gene knockout via premature stop codons is a powerful method for investigating the unique functions of target genes, achieving knockout of mtDNA has been rare.

View Article and Find Full Text PDF

Hippocampal atrophy in Alzheimer's disease (AD) is asymmetric and spatially inhomogeneous. While extensive work has been done on volume and shape analysis of atrophy of the hippocampus in AD, less attention has been given to hippocampal asymmetry specifically. Previous studies of hippocampal asymmetry are limited to global volume or shape measures, which don't localize shape asymmetry at the point level.

View Article and Find Full Text PDF

Alzheimer's disease (AD) affects the hippocampus during its progression, but the specific observable changes of hippocampal subfields during disease progression remain poorly understood. In this study, we employed an event-based model (EBM) to determine the sequence of occurrence of hippocampal subfield atrophy in mild cognitive impairment (MCI) and AD cohorts. Subjects (207) were included: 86 MCI, 53 AD, and 68 healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!