Homocysteine (Hcy) is a risk factor for vascular dysfunction. High levels of Hcy may result in vascular injury accelerating atherosclerosis leading to ischemia. After ischemia, endothelial progenitor cells (EPCs) migrate from bone marrow to repair damaged sites either through direct incorporation of EPCs or by repopulating mature endothelial cells. This study looks into the relationship between increased Hcy in patients with cerebrovascular disease (CVD) and EPCs. Some patients with hyperhomocysteinemia were treated with B vitamins to evaluate if the treatment reverses the elevated Hcy and its impact on their EPC levels. EPCs were treated with Hcy to determine the in vitro effects of Hcy. Our clinical findings show that elevated Hcy levels have an inverse relationship with EPC levels and B vitamin intervention can reverse this effect. Our in vitro work shows that Hcy-mediated EPC toxicity is due to apoptosis involving caspase-8, cytochrome c release, and caspase-3 activation. Vitamin B(6), and B(9) significantly impair Hcy-mediated EPC caspase-3 activation in vitro. Our clinical and in vitro data together indicate that increased Hcy results in a decrease in EPC numbers. This decrease in EPC by Hcy may be occurring through increased apoptosis and B vitamins (B(6), B(9)) intervention can attenuate such effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/jcbfm.2008.99 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Speech and Language Rehabilitation Department, Beijing Rehabilitation Hospital Affiliated with Capital Medical University, Beijing, China.
The background for establishing and verifying a dehydration prediction model for elderly patients with post-stroke dysphagia (PSD) based on General Utility for Latent Process (GULP) is as follows: For elderly patients with PSD, GULP technology is utilized to build a dehydration prediction model. This aims to improve the accuracy of dehydration risk assessment and provide clinical intervention, thereby offering a scientific basis and enhancing patient prognosis. This research highlights the innovative application of GULP technology in constructing complex medical prediction models and addresses the special health needs of elderly stroke patients.
View Article and Find Full Text PDFNutrients
January 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.
Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.
Nutrients
January 2025
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.
View Article and Find Full Text PDFSmall
January 2025
Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.
The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!