Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To date, the neural correlates of musical syntax processing have been investigated mainly by means of paradigms in which isolated chords are made incongruent with the harmonic context. Here, we present results obtained contrasting unfamiliar one-part piano melodies with unstructured note sequences, comparable in pitch and rhythm but devoid of any syntactic structure. This paradigm indexes a superset of the cognitive functions involved in processing of harmonic rules. Using functional magnetic resonance imaging, differential activation of a bilateral cortical network comprising the inferior frontal gyrus, superior temporal gyrus and premotor cortex was found. Using event-related potentials, the N2 evoked by each note in melodies was found to have longer latency and a more frontal distribution than that evoked in unstructured sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0b013e32830c694b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!